Transforming growth factor (TGFβ) is a secreted factor, which accumulates in tissues during many physio- and pathological processes such as embryonic development, wound healing, fibrosis and cancer. In order to analyze the effects of increased microenvironmental TGFβ concentration in vivo, we developed a conditional transgenic mouse model (Flpo/Frt system) expressing bioactive TGFβ in fibroblasts, a cell population present in the microenvironment of almost all tissues. To achieve this, we created the genetically-engineered [Fsp1-Flpo; FSFTGFβCA] mouse model. The Fsp1-Flpo allele consists in the Flpo recombinase under the control of the Fsp1 (fibroblast-specific promoter 1) promoter. The FSFTGFβCA allele consists in a transgene encoding a constitutively active mutant form of TGFβ (TGFβCA) under the control of a Frt-STOP-Frt (FSF) cassette. The FSFTGFβCA allele was created to generate this model, and functionally validated by in vitro, ex vivo and in vivo techniques. [Fsp1-Flpo; FSFTGFβCA] animals do not present any obvious phenotype despite the correct expression of TGFβCA transgene in fibroblasts. This [Fsp1-Flpo; FSFTGFβCA] model is highly pertinent for future studies on the effect of increased microenvironmental bioactive TGFβ concentrations in mice bearing Cre-dependent genetic alterations in other compartments (epithelial or immune compartments for instance). These dual recombinase system (DRS) approaches will enable scientists to study uncoupled spatiotemporal regulation of different genetic alterations within the same mouse, thus better replicating the complexity of human diseases.Changes in individual climate variables have been widely documented over the past century. However, assessments that consider changes in the collective interaction amongst multiple climate variables are relevant for understanding climate impacts on ecological and human systems yet are less well documented than univariate changes. We calculate annual multivariate climate departures during 1958-2017 relative to a baseline 1958-1987 period that account for covariance among four variables important to Earth's biota and associated systems annual climatic water deficit, annual evapotranspiration, average minimum temperature of the coldest month, and average maximum temperature of the warmest month. https://www.selleckchem.com/products/GDC-0449.html Results show positive trends in multivariate climate departures that were nearly three times that of univariate climate departures across global lands. Annual multivariate climate departures exceeded two standard deviations over the past decade for approximately 30% of global lands. Positive trends in climate departures over the last six decades were found to be primarily the result of changes in mean climate conditions consistent with the modeled effects of anthropogenic climate change rather than changes in variability. These results highlight the increasing novelty of annual climatic conditions viewed through a multivariate lens and suggest that changes in multivariate climate departures have generally outpaced univariate departures in recent decades.Heat Shock Protein 101 (HSP101), the homolog of Caseinolytic Protease B (CLPB) proteins, has functional conservation across species to play roles in heat acclimation and plant development. In wheat, several TaHSP101/CLPB genes were identified, but have not been comprehensively characterized. Given the complexity of a polyploid genome with its phenomena of homoeologous expression bias, detailed analysis on the whole TaCLPB family members is important to understand the genetic basis of heat tolerance in hexaploid wheat. In this study, a genome-wide analysis revealed thirteen members of TaCLPB gene family and their expression patterns in various tissues, developmental stages, and stress conditions. Detailed characterization of TaCLPB gene and protein structures suggested potential variations of the sub-cellular localization and their functional regulations. We revealed homoeologous specific variations among TaCLPB gene copies that have not been reported earlier. A study of the Chromosome 1 TaCLPB in four wheat genotypes demonstrated unique patterns of the homoeologous gene expression under moderate and extreme heat treatments. The results give insight into the strategies to improve heat tolerance by targeting one or some of the TaCLPB genes in wheat.Could nose-to-brain pathways mediate the effects of peptides such as oxytocin (OT) on brain physiology when delivered intranasally? We address this question by contrasting two methods of intranasal administration (a standard nasal spray, and a nebulizer expected to improve OT deposition in nasal areas putatively involved in direct nose-to-brain transport) to intravenous administration in terms of effects on regional cerebral blood flow during two hours post-dosing. We demonstrate that OT-induced decreases in amygdala perfusion, a key hub of the OT central circuitry, are explained entirely by OT increases in systemic circulation following both intranasal and intravenous OT administration. Yet we also provide robust evidence confirming the validity of the intranasal route to target specific brain regions. Our work has important translational implications and demonstrates the need to carefully consider the method of administration in our efforts to engage specific central oxytocinergic targets for the treatment of neuropsychiatric disorders.Zoonotic Salmonella causes millions of human salmonellosis infections worldwide each year. Information about the source of the bacteria guides risk managers on control and preventive strategies. Source attribution is the effort to quantify the number of sporadic human cases of a specific illness to specific sources and animal reservoirs. Source attribution methods for Salmonella have so far been based on traditional wet-lab typing methods. With the change to whole genome sequencing there is a need to develop new methods for source attribution based on sequencing data. Four European datasets collected in Denmark (DK), Germany (DE), the United Kingdom (UK) and France (FR) are presented in this descriptor. The datasets contain sequenced samples of Salmonella Typhimurium and its monophasic variants isolated from human, food, animal and the environment. The objective of the datasets was either to attribute the human salmonellosis cases to animal reservoirs or to investigate contamination of the environment by attributing the environmental isolates to different animal reservoirs.