The herbicide pyroxasulfone was widely introduced in 2012, and cases of evolved resistance in weeds such as annual ryegrass (Lolium rigidum Gaud.) and tall waterhemp [Amaranthus tuberculatus (Moq.) Sauer] have started to emerge. Pyroxasulfone is detoxified by tolerant crops, and by annual ryegrass that has been recurrently selected with pyroxasulfone, in a pathway that is hypothesized to involve glutathione conjugation. In the current study, it was confirmed that pyroxasulfone is conjugated to glutathione in vitro by glutathione transferases (GSTs) purified from susceptible and resistant annual ryegrass populations and from a tolerant crop species, wheat. The extent of conjugation corresponded to the pyroxasulfone resistance level. Pyroxasulfone-conjugating activity was higher in radicles, roots, and seeds compared to coleoptiles or expanded leaves. Among the GSTs purified from annual ryegrass radicles and seeds, an orthologue of Brachypodium distachyon GSTF13 was >20-fold more abundant in the pyroxasulfone-resistant population, suggesting that this protein could be responsible for pyroxasulfone conjugation.The global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has revealed the urgent need for accurate, rapid, and affordable diagnostic tests for epidemic understanding and management by monitoring the population worldwide. Though current diagnostic methods including real-time polymerase chain reaction (RT-PCR) provide sensitive detection of SARS-CoV-2, they require relatively long processing time, equipped laboratory facilities, and highly skilled personnel. Laser-scribed graphene (LSG)-based biosensing platforms have gained enormous attention as miniaturized electrochemical systems, holding an enormous potential as point-of-care (POC) diagnostic tools. We describe here a miniaturized LSG-based electrochemical sensing scheme for coronavirus disease 2019 (COVID-19) diagnosis combined with three-dimensional (3D) gold nanostructures. This electrode was modified with the SARS-CoV-2 spike protein antibody following the proper surface modifications proved by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) characterizations as well as electrochemical techniques. The system was integrated into a handheld POC detection system operated using a custom smartphone application, providing a user-friendly diagnostic platform due to its ease of operation, accessibility, and systematic data management. https://www.selleckchem.com/products/ms-275.html The analytical features of the electrochemical immunoassay were evaluated using the standard solution of S-protein in the range of 5.0-500 ng/mL with a detection limit of 2.9 ng/mL. A clinical study was carried out on 23 patient blood serum samples with successful COVID-19 diagnosis, compared to the commercial RT-PCR, antibody blood test, and enzyme-linked immunosorbent assay (ELISA) IgG and IgA test results. Our test provides faster results compared to commercial diagnostic tools and offers a promising alternative solution for next-generation POC applications.Impaired cutaneous healing leading to chronic wounds affects between 2 and 6% of the total population in most developed countries and it places a substantial burden on healthcare budgets. Current treatments involving antibiotic dressings and mechanical debridement are often not effective, causing severe pain, emotional distress, and social isolation in patients for years or even decades, ultimately resulting in limb amputation. Alternatively, gene therapy (such as mRNA therapies) has emerged as a viable option to promote wound healing through modulation of gene expression. However, protecting the genetic cargo from degradation and efficient transfection into primary cells remain significant challenges in the push to clinical translation. Another limiting aspect of current therapies is the lack of sustained release of drugs to match the therapeutic window. Herein, we have developed an injectable, biodegradable and cytocompatible hydrogel-based wound dressing that delivers poly(β-amino ester)s (pBAEs) nanoparticles in a sustained manner over a range of therapeutic windows. We also demonstrate that pBAE nanoparticles, successfully used in previous in vivo studies, protect the mRNA load and efficiently transfect human dermal fibroblasts upon sustained release from the hydrogel wound dressing. This prototype wound dressing technology can enable the development of novel gene therapies for the treatment of chronic wounds.Trace levels of copper can impact the flavor stability of beer. The main source of copper is malt, and the wort copper levels are established during mashing and lautering. This study focuses on sweet worts made from experimental roasted and caramel malts. Potentiometric titrations using ion-selective electrodes combined with electron paramagnetic resonance spectroscopy have been used to investigate Cu(II) binding in worts as well as the impact of Cu(II) ions on the wort oxidative stability. High-temperature treatment during malting decreased Cu(II) binding affinities in the worts, with roasted malt worts having lower affinities than caramel malt worts of similar color and pH. Electron paramagnetic resonance spectra indicated dipeptides as the main Cu(II) chelators. A positive correlation between Cu and free amino nitrogen levels in worts is demonstrated. In dark worts with high rates of radical formation, Cu(II) had pronounced antioxidative effects. In contrast, moderate prooxidative effects were observed when adding Cu(II) to pale worts with inherently low rates of oxidation.Two-dimensional (2D) nanosheet membranes have been widely studied for water and wastewater treatment. However, mass transport inside 2D nanosheet membranes is far from being fully understood, and suitable applications of these membranes are yet to be identified. In this study, we investigate ion transport inside a 2D molybdenum disulfide (MoS2) membrane by combining experimental results with numerical modeling. Specifically, we analyze the influence of the electrical double layer (EDL) extension on ion diffusion in the MoS2 membrane, and a parameter called the exclusion-enrichment coefficient (β) is introduced to quantify how the electrostatic interaction between the coions and the EDL can affect the ion diffusion. Using the model developed in this study, the β values under different experimental conditions (feed solution concentration and applied hydraulic pressure) are calculated. The results show that coion diffusion inside the membrane can be retarded since β is smaller than one. Furthermore, the underlying mechanism is explored by theoretically estimating the radial ion concentration and electrical potential distributions across the membrane nanochannel.