https://www.selleckchem.com/products/ms177.html rate of cardiac arrest calls, no emergency intubations in the ward, and appropriate palliative care support for subjects with a ceiling of care decision.Ongoing disease surveillance is a critical tool to mitigate viral outbreaks, especially during a pandemic. Environmental monitoring has significant promise even following widespread vaccination among high-risk populations. The goal of this work is to demonstrate molecular severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monitoring in bulk floor dust and related samples as a proof of concept of a noninvasive environmental surveillance methodology for coronavirus disease 2019 (COVID-19) and potentially other viral diseases. Surface swab, passive sampler, and bulk floor dust samples were collected from the rooms of individuals positive for COVID-19, and SARS-CoV-2 was measured with quantitative reverse transcription-PCR (RT-qPCR) and two digital PCR (dPCR) methods. Bulk dust samples had a geometric mean concentration of 163 copies/mg of dust and ranged from nondetects to 23,049 copies/mg of dust detected using droplet digital PCR (ddPCR). An average of 89% of bulk dust samples were positive for the vools also allow for the detection of asymptomatic disease carriers and for routine monitoring of a large number of people as has been shown for SARS-CoV-2 wastewater monitoring. However, additional monitoring techniques are needed to screen for outbreaks in high-risk settings such as congregate care facilities. Here, we demonstrate that SARS-CoV-2 can be detected in bulk floor dust collected from rooms housing infected individuals. This analysis suggests that dust may be a useful and efficient matrix for routine surveillance of viral disease.Ethanolamine (EA) is a valuable microbial carbon and nitrogen source derived from cell membranes. EA catabolism is suggested to occur in a cellular metabolic subsystem called a bacterial microcompartment (BMC), and the activati