https://www.selleckchem.com/btk.html Amphiphilic polyoxometalate (POM) surfactants were prepared by covalently grafting double hydrophobic tails with chain lengths C12H25, C14H29, C16H33 or C18H37 onto the lacunary Wells-Dawson P2W17O61 headgroup. The critical micelle concentrations (CMCs) of these novel surfactants in aqueous solutions were determined by conductivity, and micelle formation was studied by small angle neutron scattering (SANS). Surprisingly, the amphiphiles with longer hydrophobic tails tend to form less elongated and more globular micelles in water. The self-assembled amphiphilic polyoxometalates were used as templates in the hydrothermal synthesis of mesoporous TiO2 containing dispersed, immobilised P2W17O61 units, which showed enhanced activity for the photodegradation of rhodamine B (RhB). The catalyst was recycled eight times with no loss of efficiency, demonstrating the stability of the hybrid structure. The amphiphilic polyoxometalates, therefore have excellent potential for the synthesis of various types of catalytically active porous materials.Bone plays an increasingly critical role in human health and disease. More noninvasive multi-scale imaging techniques are urgently required for investigations on the substructures and biological functions of bones. Our results firstly revealed that SWIR QDs prepared by us acted as a bone-specific imaging contrast to achieve real-time observation of bone structures both in vivo and ex vivo. The major bone structures of both Balb/C nude mice and Balb/C mice including their skull, spine, pelvis, limbs, and sternum could be rapidly and gradually identified via blood circulation after QD injection in vivo. More importantly, the binding capability of our QDs mainly depended on the biological activities of bone tissues, suggesting that our technique is suitable for in vivo live imaging. In addition, the cell imaging results suggested that the potential mechanism of our bone imaging could be ascribed to the hi