https://www.selleckchem.com/products/pco371.html After 12 months of follow-up, 41 (25.5%) cardiovascular complications were detected in the group of ACS patients with ADD and 20 (13.0%) in the group of ACS patients without ADD. According to the results of the analysis of the neural network based on NAD(P)-dependent dehydrogenases of platelets activity in ACS patients with ADD, indicators were obtained that are informative for predicting the development of recurrent cardiovascular complications.The present study describes the fabrication of molecularly imprinted (MI) magnetic beaded fibers using electrospinning. Rosmarinic acid was selected as exemplary yet relevant template during molecular imprinting. A "design of experiments" methodology was used for optimizing the electrospinning process. Four factors, i.e., the concentration of the biodegradable polymer (polycaprolactone), the applied voltage, the flow rate, and the collector distance were varied in a central composite design. The production process was then optimized according to the suitability of the beaded fibers during microrobot fabrication, actuation, and drug release. The optimum average fiber diameter of MI beaded fibers was determined at 857 ± 390 nm with an average number of beads at 0.011 ± 0.002 per µm2. In vitro release profiles of the optimized MI beaded fibers revealed a lower burst rate and a more sustained release when compared to control fibers. Magnetic control of the MI beaded fibers was successfully tested by following selected waypoints along a star-shaped predefined trajectory. This study innovatively combines molecular imprinting technology with magnetic microrobots enabling targeted drug delivery systems that offer precise motion control via the magnetic response of microrobots along with selective uptake of a drug into the microrobot using MI beaded fibers in future.Search for new cardioprotective therapies is of great importance since no cardioprotective drugs are available on the mar