https://www.selleckchem.com/screening/fda-approved-drug-library.html Cytosolic calcium (Ca2+) transients control key neural processes, including neurogenesis, migration, the polarization and growth of neurons, and the establishment and maintenance of synaptic connections. They are thus involved in the development and formation of the neural system. In this study, a publicly available whole transcriptome sequencing (RNA-Seq) dataset was used to examine the expression of genes coding for putative plasma membrane and organellar Ca2+-transporting proteins (channels, pumps, exchangers, and transporters) during the formation of the cerebral cortex in mice. Four ages were considered embryonic days 11 (E11), 13 (E13), and 17 (E17), and post-natal day 1 (PN1). This transcriptomic profiling was also combined with live-cell Ca2+ imaging recordings to assess the presence of functional Ca2+ transport systems in E13 neurons. The most important Ca2+ routes of the cortical wall at the onset of corticogenesis (E11-E13) were TACAN, GluK5, nAChR β2, Cav3.1, Orai3, transient receptor potential caebral cortex formation.Monitoring the assembly process is a challenge in the manual assembly of mass customization production, in which the operator needs to change the assembly process according to different products. If an assembly error is not immediately detected during the assembly process of a product, it may lead to errors and loss of time and money in the subsequent assembly process, and will affect product quality. To monitor assembly process, this paper explored two methods recognizing assembly action and recognizing parts from complicated assembled products. In assembly action recognition, an improved three-dimensional convolutional neural network (3D CNN) model with batch normalization is proposed to detect a missing assembly action. In parts recognition, a fully convolutional network (FCN) is employed to segment, recognize different parts from complicated assembled products to chec