https://www.selleckchem.com/products/s63845.html 0. The FT-IR spectra demonstrated that ion exchange was the main way for NH4+ removal, however, electrostatic attraction and ligand exchange were the reason for MB adsorption. In addition, C-N+ from DTAC modification made main contribution to the excellent adsorption performance for ARG and H2PO4-. The saturated DTAC-PST could be conveniently regenerated by 0.5 mol L-1 NaOH solution and maintained about 80% of adsorption capacity after five cycles.Temperature increase, salinity intrusion and pesticide pollution have been suggested to be among the main stressors affecting the biodiversity of coastal wetland ecosystems. Here we assessed the single and combined effects of these stressors on zooplankton communities collected from a Mediterranean coastal lagoon. An indoor microcosm experiment was designed with temperature variation (20 °C and 30 °C), salinity (no addition, 2.5 g/L NaCl) and the insecticide chlorpyrifos (no addition, 1 μg/L) as treatments. The impact of these stressors was evaluated on water quality variables and on the zooplankton comunity (structure, diversity, abundance and taxa responses) for 28 days. This study shows that temperature is the main driver for zooplankton community change, followed by salinity and chlorpyrifos. The three stressors contributed to a decrease on zooplankton diversity. The increase of temperature contributed to an increase of zooplankton abundance. Salinity generally affected Cladocera, which resulted in a Copepoda increase at 20 °C, and a reduction in the abundance of all major zooplankton groups at 30 °C. The insecticide chlorpyrifos affected primarily Cladocera, altough the magnitude and duration of the direct and indirect effects caused by the insecticide substantially differed between the two temperature scenarios. Chlorpyrifos and salinity resulted in antagonistic effects on sensitive taxa (Cladocera) at 20 °C and 30 °C. This study shows that temperature can influence th