https://www.selleckchem.com/products/7acc2.html While significant research has been reported in the field of PDMS microfluidics, functionalization of PDMS surfaces remains a critical step in the fabrication process that is difficult to navigate. This review first offers a thorough illustration of existing fabrication methods for PDMS-based microfluidic devices, providing several recent advancements in this field with the aim of reducing the cost and time for mass production of these devices. Next, various conventional and emerging approaches for engineering the surface chemistry of PDMS are discussed in detail. We provide a wide range of functionalization techniques rendering PDMS microchannels highly biocompatible for physical or covalent immobilization of various biological entities while preventing non-specific interactions.Depression is a prevalent neuropsychiatric disease with a high recurrence rate, affecting over 350 million people worldwide. Intestinal flora disorders and gut-brain-axis (GBA) dysfunction may cause mental disorders. Alterations in the intestinal flora composition could increase the permeability of the gut barrier, activate systemic inflammation and immune responses, regulate the release and efficacy of monoamine neurotransmitters, alter the activity and function of the hypothalamic-pituitary-adrenal (HPA) axis, and modify the abundance of the brain-derived neurotrophic factor (BDNF); all of these showed a close correlation with the occurrence of depression. In addition, the disturbance of the intestinal flora is related to circadian rhythm disorders, which aggravate the symptoms of depression. Tea polyphenols (TPs) have been found to have antidepressant effects. Therefore, the close reciprocity between the intestinal flora and circadian rhythm provides a new opportunity for TPs to regulate depression relying on the intestinal flora. In this review, we discussed the relationship between intestinal flora dysbiosis and the pathogenesis of depres