https://www.selleckchem.com/products/tp-0903.html The current method to induce haploids in rice is anther culture, which is time-consuming and labor intensive and only works for some varieties. Here we describe a seed-based haploid induction system created by CRISPR/Cas9 technology. By editing OsMATL, we generate rice haploid inducer lines with a 2-5% haploid induction rate in different germplasms.CRISPR-Cas9 system is one sequence-specific nuclease (SSN) that has several advantages over zinc finger nuclease (ZFN) and transcription activator-like effector nuclease (TALEN), such as multiplex genome editing. With multiplex genome editing, CRISPR-Cas9 becomes a preferred SSN to edit many quantitative trait loci (QTL) simultaneously for trait improvement in major crops. A multiplexed CRISPR system is also important for deletion of a large fragment within a chromosome, analysis of the function of gene families, exon exchange, gene activation, and repression. Therefore, assembly of several single guide RNAs (sgRNAs) into one binary vector is the main step in multigene editing by CRISPR-Cas9. Different vector construction methods have been practiced including Golden Gate assembly. This chapter provides a detailed protocol for the construction of a T-DNA binary vector for expressing Cas9 and three sgRNAs for simultaneous targeting of three QTL genes for improving seed trait in rice.CRISPR-Cas9 and Cas12a (formerly Cpf1), RNA-guided DNA endonucleases found from adaptive immune system in prokaryotes, have been engineered and widely adopted as two of the most powerful genome editing systems in plants. Recently, we developed a single transcript unit (STU) CRISPR 2.0 toolbox for applications in plants, which contains two STU-Cas9 systems and one STU-Cas12a system. Here, we describe a detailed protocol about using the STU CRISPR 2.0 systems to achieve single and multiplex genome editing in rice.Genome editing technologies, mainly CRISPR/CAS9, are revolutionizing plant biology and