https://www.selleckchem.com/products/Aurora-A-Inhibitor-I.html The use of wireless sensors to measure motion in non-laboratory settings continues to grow in popularity. Thus far, most validated systems have been applied to measurements in controlled settings and/or for prescribed motions. The aim of this study was to characterize adolescent hip joint motion of elite-level athletes (soccer players) during practice and recreationally active peers (controls) in after-school activities using a magneto-inertial measurement unit (MIMU) system. Opal wireless sensors (APDM Inc., Portland OR, USA) were placed at the sacrum and laterally on each thigh (three sensors total). Hip joint motion was characterized by hip acceleration and hip orientation for one hour of activity on a sports field. Our methods and analysis techniques can be applied to other joints and activities. We also provide recommendations in order to guide future work using MIMUs to pervasively assess joint motions of clinical relevance.Alterations of hydrogen peroxide (H2O2) levels have a profound impact on numerous signaling cascades orchestrating plant growth, development, and stress signaling, including programmed cell death. To expand the repertoire of known molecular mechanisms implicated in H2O2 signaling, we performed a forward chemical screen to identify small molecules that could alleviate the photorespiratory-induced cell death phenotype of Arabidopsisthaliana mutants lacking H2O2-scavenging capacity by peroxisomal catalase2. Here, we report the characterization of pakerine, an m-sulfamoyl benzamide from the sulfonamide family. Pakerine alleviates the cell death phenotype of cat2 mutants exposed to photorespiration-promoting conditions and delays dark-induced senescence in wild-type Arabidopsis leaves. By using a combination of transcriptomics, metabolomics, and affinity purification, we identified abnormal inflorescence meristem 1 (AIM1) as a putative protein target of pakerine. AIM1 is a 3-hydroxya