Solid oxide electrolysis cells (SOECs) are devices that enable economically viable production of clean fuel such as hydrogen gas, which can be used in many industrial applications and serving as an energy carrier for renewable energy sources. Operation of SOEC at intermediate temperature (IT) range (400 to 600 °C) is highly attractive because many unexploited heat sources from industries can be utilized. Proton conducting SOECs based on barium-zirconium-cerate electrolytes show great potential for operating at this temperature range due to their high proton conductivity at reduced temperatures. In this study, a new tridoped BaCe0.5Zr0.2Y0.1Yb0.1Gd0.1O3-δ (BCZYYbGd) electrolyte with very high chemical stability and proton conductivity is coupled with a PrNi0.5Co0.5O3-δ steam electrode and a Ni-BCYYbGd hydrogen electrode for IT-SOEC operation. The dopants of the electrolyte were carefully designed to obtain the optimum stability and conductivity for IT-SOEC. The BCYYbGd electrolyte was stable over 200 h at 50 vol % steam in argon and at 600 °C, and a very high electrolysis current density of 2.405 A cm-2 was obtained at 600 °C and 1.6 V at 20 vol % of steam in argon. This system was also found to be highly reversible, exhibiting very high performance in SOFC mode and suggesting a potential candidate for next generation proton conducting electrolyte.Herein, we disclose three structurally differentiated γ-secretase modulators (GSMs) based on an oxadiazine scaffold. The analogues from series I potently inhibit the generation of Aβ42 in vitro when the substituents at 3 and 4 positions of the oxadiazine moiety adopt an α orientation (cf. 11). To address the concern around potential reactivity of the exocyclic double bond present in series I toward nucleophilic attack, compounds containing either an endocyclic double bond, such as 20 (series II), or devoid of an olefinic moiety, such as 27 (series III), were designed and validated as novel GSMs. Compound 11 and azepine 20 exhibit robust lowering of CSF Aβ42 in rats treated with a 30 mg/kg oral dose.Inhibitors of the respiratory syncytial virus (RSV) fusion protein block entry of the virus into the cell and have shown varying efficacy in a human challenge model of RSV disease. Trials in patient populations are yet to show significant benefits. Jonckers et al. ( J. Med. Chem. 2020, DOI 10.1021/acs.jmedchem.0c00226) describe the discovery of JNJ-53718678 which can now claim the leading position in clinical evaluation. For RSV inhibitors, the current status of the clinical development of the compound is discussed.Inappropriate activation of endosomal TLR7 and TLR8 occurs in several autoimmune diseases, in particular systemic lupus erythematosus (SLE). Herein, the development of a TLR8 antagonist competition assay and its application for hit generation of dual TLR7/8 antagonists are reported. The structure-guided optimization of the pyridone hit 3 using this biochemical assay in combination with cellular and TLR8 cocrystal structural data resulted in the identification of a highly potent and selective TLR7/8 antagonist (27) with in vivo efficacy. The two key steps for optimization were (i) a core morph guided by a TLR7 sequence alignment to achieve a dual TLR7/8 antagonism profile and (ii) introduction of a fluorine in the piperidine ring to reduce its basicity, resulting in attractive oral pharmacokinetic (PK) properties and improved TLR8 binding affinity.Despite the considerable interest in insensitive high explosives (IHE) as a safer alternative to conventional high explosives, a good understanding of the low sensitivity of IHEs to shock initiation is lacking. In particular, real-time measurements to directly probe the molecular-level response of shock-compressed IHE single crystals constitute an important need. To address this need, plate impact experiments were conducted to determine time-resolved changes in the Raman spectra of 1,1-diamino-2,2-dinitroethene (FOX-7) single crystals-a representative IHE crystal-shock-compressed up to 20 GPa longitudinal stress. The Raman measurements examined vibrational frequencies from 800 to 1500 cm-1 with 15 ns time resolution and were conducted at several peak stresses. At 4-6 GPa, two new Raman peaks appeared, in addition to the original peaks, consistent with onset of the α'-ε structural transformation reported previously in static compression work. The measured spectra indicated completion of the transformation at 10 GPa. Raman data to 20 GPa showed neither additional transformations nor any indication of chemical decomposition. This finding, though consistent with recent continuum measurements, is in marked contrast to the chemical decomposition observed at lower stresses in shock-compressed conventional high explosive single crystals. Our Raman results support the previous suggestion that strengthening of intra- and intermolecular bonds, because of the α'-ε structural transformation, plays a significant role in the insensitivity of FOX-7 single crystals to shock initiation. The present work, in conjunction with previous static compression studies, provides the first experimental insight into the molecular-level response of a shock-compressed IHE single crystal and can serve as a bench mark for theoretical studies.We present an experimental and theoretical investigation of the photon interaction with formic acid in the vacuum-ultraviolet energy range. The absolute absorption cross sections and ionization efficiencies were measured in the 11.2-21.4 and 13.5-21.4 eV ranges, respectively, using a double-ion chamber technique. Photoionization and neutral-decay cross sections were derived from these results. From the present ionization cross sections and previously reported ionic dissociative branching ratios, the partial cross sections for dissociating processes were obtained. Theoretically, the photoionization cross sections and the asymmetry parameters of the photoelectron angular distributions for ionization out of the six outermost valence orbitals (10a', 2a″, 9a', 1a″, 8a', and 7a') were obtained in the energy range from near-threshold to 35 eV. https://www.selleckchem.com/products/semaxanib-su5416.html For that, the Padé approximant technique along with the single-center partial-wave expansion method was applied to solve the Lippmann-Schwinger equation in the static-exchange-polarization level of approximation.