https://www.selleckchem.com/JAK.html To using finite element analysis to investigate the effects of the traditional titanium alloy Gamma nail and a biodegradable magnesium alloy bionic Gamma nail for treating intertrochanteric fractures. Computed tomography images of an adult male volunteer of appropriate age and in good physical condition were used to establish a three-dimensional model of the proximal femur. Then, a model of a type 31A1 intertrochanteric fracture of the proximal femur was established, and the traditional titanium alloy Gamma nails and biodegradable magnesium alloy bionic Gamma nails were used for fixation, respectively. The von Mises stress, the maximum principal stress, and the minimum principal stress were calculated to evaluate the effect of bone ingrowth on stress distribution of the proximal femur after fixation. In the intact model, the maximum stress was 5.8 MPa, the minimum stress was -11.7 MPa, and the von Mises stress was 11.4 MPa. The maximum principal stress distribution of the cancellous bone in the intact mhat of intact bone while reducing the risk of postoperative complications associated with traditional internal fixation techniques, and it has promising clinical value in the future. The biodegradable magnesium alloy bionic Gamma nail implant can improve the stress distribution of fractured bone close to that of intact bone while reducing the risk of postoperative complications associated with traditional internal fixation techniques, and it has promising clinical value in the future.A B(dan) moiety (dan=naphthalene-1,8-diaminato) of diminished boron-Lewis acidity has efficiently been installed into organic frameworks by three-component carboboration of alkenes under copper catalysis, where a Cu-B(dan) species, generated by chemoselective σ-bond metathesis between a copper catalyst and an unsymmetrical diboron [(pin)B-B(dan)], acts as a key intermediate. The Cu-B(dan) species has also turned out to serve as a B(dan) nucleophile to