https://www.selleckchem.com/products/tauroursodeoxycholic-acid.html Corilagin (β-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose) is a tannin isolated from the traditional ethnopharmacological plant Phmllanthi Fructus, which is widely used in not only traditional Chinese medicine but also tropical and subtropical medicine to ameliorate various diseases. This study was designed to isolate the potential anti-esophageal cancer (EC) component corilagin from Phmllanthi Fructus and explain its anti-EC mechanism. Corilagin was isolated from Phmllanthi Fructus by extraction and chromatographic procedures, and its anti-esophageal cancer effect was evaluated by in vitro and in vivo experiments. In vitro experiments included MTT analysis, flow cytometry, and the Transwell assay and were used to observe corilagin-mediated inhibition of EC cell growth. Western blotting was used to analyze the apoptotic pathway of EC cells. In vivo experiments used tumor-bearing nude mice to evaluate the antitumor effect of corilagin, and its potential mechanism was explored by Western blotting. ing mitochondrial and endoplasmic reticulum stress signaling pathways. Hard antler extract (HAE) is a traditional Chinese medicine and has potent antitumor, antioxidative, anti-inflammatory, and immunomodulatory activities. Previous studies have demonstrated that HAE can inhibit human prostate cancer metastasis and murine breast cancer proliferation. However, the effect of HAE on human breast cancer cells has not been clarified. To investigate the effects and underlying mechanism of HAE on self-renewal of stem-like cells and spontaneous and transforming growth factor (TGF)-β1-enhanced wound healing, invasion and epithelial-mesenchymal transition (EMT) in breast cancer cells. HAE was prepared from sika deer by sequential enzymatic digestions and the active compounds were determined by HPLC. The effects of HAE on the viability, mammosphere formation, wound healing and invasion of MDA-MB-231 and SK-BR3 ce