https://www.selleckchem.com/products/jnk-in-8.html The early embryos of sea urchins and other echinoderms have served as experimental models for the study of cell division since the nineteenth century. Their rapid development, optical clarity, and ease of manipulation continue to offer advantages for studying spindle assembly and cytokinesis. In the absence of transgenic lines, alternative strategies must be employed to visualize microtubules and actin. Here, we describe methods to visualize actin and microtubule using either purified, recombinant proteins, or probes in in vitro-transcribed mRNAs.Mammalian cell surface lectins mediate many important biological interactions which regulate physiological processes and therefore profiling mammalian cells on glycan microarray is of interest. However, many whole mammalian cells are not compatible with glycomics microarray formats and instead cell-derived micelles are prepared and profiled instead of whole cells as they can accurately represent the parental cell glycome. In this chapter, we describe the preparation of cell-derived micelles from mammalian cells, their labeling using a membrane-incorporating dye, and their profiling on a glycan microarray platform.The use of glycan microarrays to study carbohydrate interactions of bacterial cells is of great interest owing to the key roles these interactions play in bacterial colonization and infection of a host. In this chapter, the methods to fluorescently stain Gram-positive or Gram-negative bacteria and profiling them for glycan interactions using glycan microarrays are described in detail. The application of the Student's t-test to glycan microarray data using an example data set comparing glycan microarray binding of an Acinetobacter baumannii wild type and mutant strain is also described in step-by-step detail.Lectin-based protein microarrays are used for glycoprofiling of various kinds of biological samples. Here we describe lectin-based microarray assay in the rever