https://www.selleckchem.com/products/su5402.html Hydrogen adsorption ability is a key parameter characterizing advanced porous materials. Herein, the influence of platinum catalyst on the interaction of Cu-BTC with hydrogen is thoroughly investigated using volumetric measurements, calorimetric titration, XRD, and IR- and EPR spectroscopy. The first hydrogen adsorption by the Cu-BTC + Pt/C composite leads to an irreversible chemical reaction related to the formation of structural defects during synthesis. This process results in a partial reduction of Cu2+ to Cu0 and is accompanied by a decrease in the specific surface area and the appearance of additional mesopores. The following hydrogen adsorption-desorption cycles are completely reversible and reproducible. Besides, the Pt-containing material maintains a positive trend in excess adsorption up to ultra-high pressures in contrast with pristine Cu-BTC. Above 300-400 bars, it demonstrates a significant superiority in hydrogen capacity over the catalyst-free MOF. The possible nature of such a peculiar phenomenon is suggested. According to the World Health Organization, the worldwide prevalence of diabetes mellitus (DM) is increasing dramatically and DM comprises a large part of the global burden of disease. At the same time, the ongoing digitalization that is occurring in society today offers novel possibilities to deal with this challenge, such as the creation of mobile health (mHealth) apps. However, while a great variety of DM-specific mHealth apps exist, the evidence in terms of their clinical effectiveness is still limited. The objective of this review was to evaluate the clinical effectiveness of mHealth apps in DM management by analyzing health-related outcomes in patients diagnosed with type 1 DM (T1DM), type 2 DM (T2DM), and gestational DM. A scoping review was performed. A systematic literature search was conducted in MEDLINE (PubMed), Cochrane Library, EMBASE, CINAHL, and Web of Science Core Collection data