Moreover, we identified many additional NATs with embedded MIRs (MIR-NATs), which are overrepresented at coding genes linked to neurodegeneration and/or encoding IDPs, and confirmed MIR-NAT-mediated translational control of one such gene, PLCG1. These results demonstrate a key role for MAPT-AS1 in tauopathies and reveal a potentially broad contribution of MIR-NATs to the tightly controlled translation of IDPs6, with particular relevance for proteostasis in neurodegeneration.Genetic risk variants that have been identified in genome-wide association studies of complex diseases are primarily non-coding1. Translating these risk variants into mechanistic insights requires detailed maps of gene regulation in disease-relevant cell types2. Here we combined two approaches a genome-wide association study of type 1 diabetes (T1D) using 520,580 samples, and the identification of candidate cis-regulatory elements (cCREs) in pancreas and peripheral blood mononuclear cells using single-nucleus assay for transposase-accessible chromatin with sequencing (snATAC-seq) of 131,554 nuclei. Risk variants for T1D were enriched in cCREs that were active in T cells and other cell types, including acinar and ductal cells of the exocrine pancreas. Risk variants at multiple T1D signals overlapped with exocrine-specific cCREs that were linked to genes with exocrine-specific expression. At the CFTR locus, the T1D risk variant rs7795896 mapped to a ductal-specific cCRE that regulated CFTR; the risk allele reduced transcription factor binding, enhancer activity and CFTR expression in ductal cells. These findings support a role for the exocrine pancreas in the pathogenesis of T1D and highlight the power of large-scale genome-wide association studies and single-cell epigenomics for understanding the cellular origins of complex disease.Understanding how a neural network makes decisions holds significant value for users. For this reason, gradient-based saliency mapping was tested on an artificial intelligence (AI) regression model for determining hand bone age from X-ray radiographs. The partial derivative (PD) of the inferred age with respect to input image intensity at each pixel served as a saliency marker to find sensitive areas contributing to the outcome. The mean of the absolute PD values was calculated for five anatomical regions of interest, and one hundred test images were evaluated with this procedure. The PD maps suggested that the AI model employed a holistic approach in determining hand bone age, with the wrist area being the most important at early ages. However, this importance decreased with increasing age. https://www.selleckchem.com/products/ly2157299.html The middle section of the metacarpal bones was the least important area for bone age determination. The muscular region between the first and second metacarpal bones also exhibited high PD values but contained no bone age information, suggesting a region of vulnerability in age determination. An end-to-end gradient-based saliency map can be obtained from a black box regression AI model and provide insight into how the model makes decisions.Using genetic tools to study the functional roles of molecularly specified neuronal populations in the primate brain is challenging, primarily because of specificity and verification of virus-mediated targeting. Here, we report a lentivirus-based system that helps improve specificity and verification by (a) targeting a selected molecular mechanism, (b) in vivo reporting of expression, and (c) allowing the option to independently silence all regional neural activity. Specifically, we modulate cholinergic signaling of striatal interneurons by shRNAmir and pair it with hM4Di_CFP, a chemogenetic receptor that can function as an in vivo and in situ reporter. Quantitative analyses by visual and deep-learning assisted methods show an inverse linear relation between hM4Di_CFP and ChAT protein expression for several shRNAmir constructs. This approach successfully applies shRNAmir to modulating gene expression in the primate brain and shows that hM4Di_CFP can act as a readout for this modulation.Approaches are needed for therapy of the severe acute respiratory syndrome from SARS-CoV-2 coronavirus (COVID-19). Interfering with the interaction of viral antigens with the angiotensin converting enzyme 2 (ACE-2) receptor is a promising strategy by blocking the infection of the coronaviruses into human cells. We have implemented a novel protein engineering technology to produce a super-potent tetravalent form of ACE2, coupled to the human immunoglobulin γ1 Fc region, using a self-assembling, tetramerization domain from p53 protein. This high molecular weight Quad protein (ACE2-Fc-TD) retains binding to the SARS-CoV-2 receptor binding spike protein and can form a complex with the spike protein plus anti-viral antibodies. The ACE2-Fc-TD acts as a powerful decoy protein that out-performs soluble monomeric and dimeric ACE2 proteins and blocks both SARS-CoV-2 pseudovirus and SARS-CoV-2 virus infection with greatly enhanced efficacy. The ACE2 tetrameric protein complex promise to be important for development as decoy therapeutic proteins against COVID-19. In contrast to monoclonal antibodies, ACE2 decoy is unlikely to be affected by mutations in SARS-CoV-2 that are beginning to appear in variant forms. In addition, ACE2 multimeric proteins will be available as therapeutic proteins should new coronaviruses appear in the future because these are likely to interact with ACE2 receptor.Chemiresistors that are based on monolayer-capped metal nanoparticles (MCNPs) have been used in a wide variety of innovative sensing applications, including detection and monitoring of diagnostic markers in body fluids, explosive materials, environmental contaminations and food quality control. The sensing mechanism is based on reversible swelling or aggregation and/or changes in dielectric constant of the MCNPs. In this protocol, we describe a procedure for producing MCNP-based chemiresistive sensors that is reproducible from device to device and from batch to batch. The approach relies on three main steps (i) controlled synthesis of gold MCNPs, (ii) fabrication of electrodes that are surrounded with a microbarrier ring to confine the deposited MCNP solution and (iii) a tailor-made drying process to enable evaporation of solvent residues from the MCNP sensing layer to prevent a coffee-ring effect. Application of this approach has been shown to produce devices with ±1.5% variance-a value consistent with the criterion for commercial sensors-as well as long shelf life and stability.