https://www.selleckchem.com/products/cm272-cm-272.html To date, most high-performance perovskite solar cells (PSCs) are fabricated in an inert or vacuum condition to circumvent the moisture effect, which is one of the leading causes of sparse crystal nucleation and nonuniform morphology. Therefore, it is crucial to develop a simple approach to deposit a uniform and homogeneous perovskite on a planar substrate in ambient air for the mass production of PSCs. Herein, we investigated the synergistic effect of additive 1,8-diiodooctane (DIO) and solvent vapor annealing (SVA) treatments on the performance of PSCs fabricated in ambient air. It was found that the addition of 1 vol % DIO together with SVA treatment results in the enhancement of the perovskite film's crystallinity, grain size, and photophysical properties. PSCs containing 1 vol % DIO additive and SVA treatment exhibited a power conversion of efficiency (PCE) of 17.04%, which is markedly higher than the control device with a PCE of 10.61%. The results indicate that the additive DIO and SVA can work together to significantly improve the performance of PSCs fabricated in ambient air. This work provides a promising route for developing high-performance PSCs in the ambient environment.Alzheimer's disease (AD) is a progressively debilitating neurodegenerative disorder that has no effective remedy, so far, with available therapeutic modalities being only symptomatic and of modest efficacy. Necroptosis is a form of controlled cell death with a recently emerging link to the pathogenesis of several neurodegenerative diseases. This study investigated the role of necroptosis in the pathogenesis of AD and evaluated the potential beneficial effect of the necroptosis inhibitor, necrosulfonamide (NSA), in a rat model of AD. AD was induced by oral administration of AlCl3 (17 mg/kg/day) for 6 consecutive weeks. Administration of NSA (1.65 mg/kg/day) intraperitoneally for 6 weeks significantly amended AlCl3-induced spatial lear