The research of value-added applications for coffee silverskin (CSS) requires studies to investigate potential bioactive compounds and biological activities in CSS extracts. In this study, different ultrasound-assisted extraction (UAE) methods have been tested to extract bioactive compounds from CSS. The obtained extracts, were characterized using a new HPLC-MS/MS method to detect and quantify 30 bioactive compounds of 2 classes alkaloids and polyphenols (including phenolic acids, flavonoids, and secoiridoids). CSS extracts obtained with ethanol/water (7030) as extraction solvent showed the highest levels (p ≤ 0.05) of bioactive compounds (4.01 ± 0.34% w/w). High content of caffeine was observed with levels varying from 1.00% to 3.59% of dry weight of extract (dw). https://www.selleckchem.com/products/otx015.html 18 phenolic compounds were detected in CSS extracts with caffeoylquinic acids (3-CQA, 5-CQA and 3,5-diCQA) as the most abundant polyphenols (3115.6 µg g to -5444.0 µg g-1). This study is also one of the first to characterize in-depth flavonoids in CSS revealing the levels of different flavonoids compounds such as rutin (1.63-8.70 µg g-1), quercetin (1.53-2.46 µg g-1), kaempferol (0.76-1.66 µg g-1) and quercitrin (0.15-0.51 µg g-1). Neuroprotective activity of silverskin extracts against H2O2-induced damage was evaluated for the first time suggesting for methanol and ethanol/water (7030) extracts a potential role as protective agents against neurodegeneration due to their ability to counteract oxidative stress and maintain cell viability. Silverskin extracts were not inhibiting the growth of anyone of the bacterial species included in this study but data obtained by water extract might deserve a deeper future investigation on biofilm-related activities, such as quorum sensing or virulence factors' expression. From their composition and their evidenced biological activities, CSS extracts could represent valuable ingredients in nutraceutical formulations.The aim of this study was to identify dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from salmon skin collagen hydrolysate, and to evaluate the possible inhibition mechanism of DPP-IV and peptide. Salmon skin collagen was hydrolyzed by pepsin, trypsin, papain, or Alcalase 2.4 L, separately. Trypsin hydrolysate (10 mg/mL) showed the highest inhibitory activity of 66.12 ± 0.68%. The hydrolysate was separated into three fractions by ultrafiltration, and the inhibitory IC50 of M1 (molecular weight less then 3 kDa) was 1.54 ± 0.06 mg/mL. M1 was separated by gel chromatography and RP-HPLC; A10 was the highest inhibitory fraction in the 12 fractions, i.e., IC50 was 0.79 ± 0.13 mg/mL. A novel peptide LDKVFR with the IC50 value of 0.1 ± 0.03 mg/mL (128.71 μM) was identified from A10. Molecular docking revealed that six hydrogen bonds and eight hydrophobic interactions between LDKVFR and DPP-IV were contributed to DPP-IV inhibition.Pulsed magnetic field (PMF) is an emerging non-thermal decontamination technology. The lack of research on microbial inactivation mechanisms restricts the wide application of PMF. In this study the effect of PMF on the gene expression level of Listeria monocytogenes (L. monocytogenes) was evaluated to explore the inactivation mechanism of PMF. Transcriptomics was applied to study the gene expression level of Listeria monocytogenes and 588 differentially expressed genes (DEGs) including 307 up-regulated and 281 down-regulated genes were identified after PMF treatment (8 T, 20 pulses). Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis have demonstrated significant changes in mobility, carbohydrate metabolism, energy metabolism, amino acid metabolism, phosphorylation and dephosphorylation, membrane, quorum sensing, two-component regulatory system and ATP-binding cassette (ABC) transporters. The expression level of 5 relevant genes was subsequently confirmed by quantitative real-time PCR assay.Cold temperature is a common method to store peach after harvest. While long-term cold storage leads to the occurrence of chilling injury and loss of volatile organic compounds (VOCs) after transferring peach to shelf life. Nitric oxide (NO) treatment has been proven to alleviate peach chilling injury. However, the effect of NO treatment on peach VOCs during cold storage plus shelf life is still unknown. In this study, 10 μL L-1 NO was used to fumigate peach before 4 °C cold storage. After cold storage for 21 days, peach were transferred to 20 °C for 3 days to simulate shelf life. Results showed that NO treatment promoted the emission of main VOCs including C6 aldehydes, C6 alcohols, straight-chain esters and lactones after cold storage, supported by the changes of fatty acids and genes expression of PpFADs, PpLOXs, PpHPL, PpADH, PpAATs and PpACXs. Besides, NO also alleviated the occurrence of chilling injury and promoted the recovery of respiration rate and ethylene production during shelf life. In conclusion, treatment with NO effectively prevented the loss of VOCs when transferring peach from cold temperature to shelf life in "Xiahui 6" peach and the possible mechanisms were discussed.This study investigated the effects of breed and age on meat quality, and metabolite profiles of duck breast meat, and the relationship between changes in metabolite profiles and the meat quality. The meat quality and 1H nuclear magnetic resonance (NMR)-based metabolomics of breast meat from Pekin and Linwu ducks at 2 different ages (42 and 72d) was analyzed. The results showed that age exerted a greater effect on the observed meat quality traits of breast meat than breed, and its interaction (breed × age) effect on pH values and yellowness (b*) of duck breast meat was significant. Total of 32 metabolites were detected in breast meat of Pekin and Linwu duck. The difference of metabolite profiles in breast meat between Pekin and Linwu duck at 72 d was greater than that at 42 d, while the effects of age on metabolites of duck meat from both breeds were similar. Anserine, aspartate, and carnosine were the most relevant metabolites of duck breast meat quality, and nicotinamide in duck breast meat was negatively correlated with cooking loss.