https://www.selleckchem.com/products/Y-27632.html However, this effect was no longer observed after sinoaortic denervation, homatropine (M2 muscarinic antagonist) treatment or hypophysectomy, indicating that parasympathetic activation mediated by oxytocin secreted to the periphery is responsible for blocking the increase in tachycardic responses observed in the atosiban-treated group. Corroborating this, L-368,899 (oxytocin antagonist) treatment showed an opposite effect to atosiban, increasing tachycardic responses to restraint. Thus, this provides evidence that oxytocin secreted to the periphery attenuates tachycardic responses evoked by restraint via increased parasympathetic activity, promoting cardioprotection by reducing the stress-evoked heart rate increase.Autophagy is essential to vessel homeostasis and function in the cardiovascular system. Ligustilide (LIG) is one of the main active ingredients extracted from traditional Chinese medicines, such as Ligusticum chuanxiong, Angelica, and other umbelliferous plants, and reported to have cardiovascular protective effects. In this study, we explore the effects and the potential mechanism of ligustilide on the Ang II-induced autophagy in A7r5 cells. Our results showed that ligustilide inhibited the Ang II-induced autophagy in A7r5 cells and down regulated the expression of autophagy-related proteins LC3, ULK1, and Beclin-1. Ligustilide exerted a protective effect on the reduction of the concentrations of reactive oxygen species and Ca2+ and upregulated the nitric oxide concentration in A7r5 cells with Ang II-induced autophagy. Additionally, the analyses of network pharmacological targets and potential signal pathways indicated that the target of ligustilide to regulate autophagy was related to the Akt/mTOR signaling pathway. Furthermore, ligustilide could upregulate the expression of p-Akt and p-mTOR and inhibit the expression of LC3II in A7r5 cells with Ang II-induced autophagy. These findings showed that ligust