Two cocrystals of 18-crown-6 with isophthalic acid derivatives, 5-hydroxyisophthalic acid and trimesic acid, have been successfully grown by the slow evaporation solution growth technique. Crystal structures of (18-crown-6)·6(5-hydroxyisophthalic acid)·10(H2O) (I) and (18-crown-6)·2(trimesic acid)·2(H2O) (II) elucidated by single crystal X-ray diffraction reveal that both cocrystals pack the centrosymmetric triclinic space group P\overline 1. The molecules are associated by strong/weak hydrogen bonds, π...π and H...H stacking interactions. Powder X-ray diffraction analyses, experimental and simulated from single-crystal diffractogram data have been matched. The vibrational patterns in FT-IR spectra are used to identify the functional groups. The band gap energy is estimated by the application of the Kubelka-Munk algorithm. Hirshfeld surfaces derived from X-ray diffraction analysis reveal the type of molecular interactions and their relative contributions. The constructed supramolecular assembly of crown ether cocrystal is thoroughly described. Both cocrystals exhibit a significant third-order nonlinear optical response and it is observed that (I) possesses a significant first-order molecular hyperpolarizability whereas it is negligible for (II).Manufacturing high-quality zinc oxide (ZnO) devices demands control of the orientation of ZnO materials due to the spontaneous and piezoelectric polarity perpendicular to the c-plane. However, flexible electronic and optoelectronic devices are mostly built on polymers or glass substrates which lack suitable epitaxy seeds for the orientation control. Applying cubic-structure seeds, it was possible to fabricate polar c-plane and nonpolar m-plane aluminium-doped zinc oxide (AZO) films epitaxially on flexible Hastelloy substrates through minimizing the lattice mismatch. The growth is predicted of c-plane and m-plane AZO on cubic buffers with lattice parameters of 3.94-4.63 Å and 5.20-5.60 Å, respectively. The ∼80 nm-thick m-plane AZO film has a resistivity of ∼11.43 ± 0.01 × 10-4 Ω cm, while the c-plane AZO film shows a resistivity of ∼2.68 ± 0.02 × 10-4 Ω cm comparable to commercial indium tin oxide films. An abnormally higher carrier concentration in the c-plane than in the m-plane AZO film results from the electrical polarity along the c-axis. The resistivity of the c-plane AZO film drops to the order of 10-5 Ω cm at 500 K owing to the semiconducting behaviour. Epitaxial AZO films with low resistivities and controllable orientations on flexible substrates offer optimal transparent electrodes and epitaxy seeds for high-performance flexible ZnO devices.Reversible solvent-triggered single-crystal-to-single-crystal (SCSC) transformations are observed between two copper(II) azamacrocyclic complexes [Cu(C16H38N6)(H2O)2](C12H6O4) (1) and [Cu(C16H38N6)(C12H6O4)] (2). Complex (1) was prepared via self-assembly of a copper(II) azamacrocyclic complex containing butyl pendant groups, [Cu(C16H38N6)(ClO4)2], with 2,7-naphthalenedicarboxylic acid. When monomeric compound (1) was immersed in CH3OH, coordination polymer (2) was obtained, indicating a solvent-triggered SCSC transformation. Furthermore, when (2) was immersed in water, an reverse SCSC transformation from (2) to (1) occurred. Complex (1) presents a 3D supramolecular structure formed via intermolecular hydrogen-bonding interactions, whereas complex (2) features a 1D zigzag coordination polymer. The reversible SCSC transformation of (1) and (2) was characterized using single-crystal X-ray diffraction and in situ powder X-ray diffraction techniques. Despite its poor porosity, complex (2) displayed interesting CO2 adsorption behaviour under CO2 gas.Despite the high profile of aconine in WuTou injection, there has been no preparative technology or structural studies of its salt as the pharmaceutical product. The lack of any halide salt forms is surprising as aconine contains a tertiary nitrogen atom. In this work, aconine was prepared from the degradation of aconitine in Aconiti kusnezoffii radix (CaoWu). A green chemistry technique was applied to enrich the lipophilic-poor aconine. Reaction of aconine with hydrochloride acid resulted in protonation of the nitrogen atom and gave a novel salt form (C25H42NO9+·Cl-·H2O; aconine hydrochloride monohydrate, AHM), whose cation in the crystal structure was elucidated based on extensive spectroscopic and X-ray crystallographic analyses. The AHM crystal had a Z' = 3 structure with three independent cation-anion pairs, with profound conformational differences among the aconine cations. The central framework of each aconine cation was compared with that of previously reported aconitine, proving that protonation of the nitrogen atom induced the structure rearrangement. In the crystal of AHM, aconine cations, chloride anions and water molecules interacted through inter-species O-H...Cl and O-H...O hydrogen bonds; this complex hydrogen-bonding network stabilizes the supramolecular structure. The seriously disordered solvent molecules were treated using the PLATON SQUEEZE procedure [Spek (2015). Acta Cryst. C71, 9-18] and their atoms were therefore omitted from the refinement. Bioactivity studies indicated that AHM promoted in vitro proliferative activities of RAW264.7 cells. Molecular docking suggested AHM could target cardiotoxic protein through the hydrogen-bonding interactions. The structural confirmation of AHM offers a rational approach for improving the pharmaceutical technology of WuTou injection.The high thermoelectric performance of cuprous selenide (Cu2Se) arises from its specific structures consisting of two independent sublattices, i.e. the rigid face-centered cubic (f.c.c.) Se sublattice and the flexible Cu sublattice showing a variety of ordered configurations at numerous interstitial sites. Upon increasing the temperature, the Cu sublattice undergoes an order-to-disorder transition but the details of the structural evolution have not been fully elucidated. Here, in situ transmission electron microscopy (TEM) is used to investigate the thermally induced structural changes of Cu2Se in both real and reciprocal spaces. Order-disorder transition was found to proceed in nanoblocks accompanied by the structural fluctuations between low-temperature and high-temperature phases. Electron diffraction revealed the emergence of medium-range ordering of Cu atoms in the high-temperature f.c.c. https://www.selleckchem.com/products/mdivi-1.html phase. By referring to the Coulomb interaction evaluations, the superstructures for the medium-range ordering were constructed.