PURPOSE There is a lack of knowledge about factors that influence the performance of comprehensive medication reviews (CMRs) by multiprofessional teams in hospital practice. https://www.selleckchem.com/products/Erlotinib-Hydrochloride.html This study aimed to explore the facilitators and barriers for performing CMRs and post-discharge follow-up in older hospitalised patients from the healthcare professional perspective. METHODS Physicians and ward-based pharmacists were recruited from an ongoing trial at four hospitals in Sweden. Semi-structured interviews were conducted with 16 physicians and 7 pharmacists. Interview topics were working processes, resources, competences, medication-related problems, intervention effects and collaboration. The interviews were audio-recorded, transcribed verbatim and thematically analysed using the Consolidated Framework for Implementation Research (CFIR). Identified subthemes were categorised as facilitators or barriers and grouped into overarching main themes. RESULTS In total, 21 facilitators and 25 barriers were identified across all CFIR domains and grouped in 6 main themes (a) CMRs and follow-up are needed, but not in all patients; (b) there is a general belief in positive effects; (c) lack of resources is an issue, although the performance of CMRs may save time; (d) pharmacists' knowledge and skills are valuable, but they need more clinical competence; (e) compatibility with hospital practice is challenging, and roles and responsibilities are unclear and (f) personal contact at the ward is essential for physician-pharmacist collaboration. CONCLUSION Multiple facilitators and barriers for performing CMRs and post-discharge follow-up in older hospitalised patients exist. These factors should be addressed in future initiatives with similar interventions by multiprofessional teams to ensure successful implementation and performance in hospital practice.The microbial ecosystems of the sludge were characterized in terms of the core community structure, functional pathways, and functional redundancy through Illumina MiSeq sequencing and PICRUSt analysis on the activated sludge (AS) samples from an extended activated aeration process. Based on the identified OTU distribution, we identified 125 core community genera, including 3 abundant core genera and 21 intermittent abundant core genera. Putative genera Nitrosomonas, Nitrotoga, Zoogloea, Novosphingobium, Thermomonas, Amaricoccus, Tetrasphaera, Candidatus Microthrix, and Haliscomenobacter, which are associated with functions of nitrifying, denitrifying, phosphorus accumulating, and bulking and foaming, were found to present as the core community organisms in the AS sampled from the conventional extended aeration AS processes. The high-abundant nitrogen metabolic pathways were associated with nitrate reduction to ammonium (DNRA and ANRA), denitrification, and nitrogen fixation, while the ammonia oxidation-related genes (amo) were rarely annotated in the AS samples. Strict functional redundancy was not found with the AS ecosystem as it showed a high correlation between the community composition similarity and function similarity. In addition, the classified dominant core genera community was found to be sufficient to characterize the functionality of AS, which could invigorate applications of 16S rDNA MiSeq sequencing and PICRUSt for the prediction of functions of AS ecosystems.Photosynthetic microbial mats are stable, self-supported communities. Due to their coastal localization, these mats are frequently exposed to hydrocarbon contamination and are able to grow on it. To decipher how this contamination disturbs the functioning of microbial mats, we compared two mats a contaminated mat exposed to chronic petroleum contamination and a reference mat. The taxonomic and metabolic structures of the mats in spring and fall were determined using metagenomic and metatranscriptomic approaches. Extremely high contamination disturbed the seasonal variations of the mat. ABC transporters, two-component systems, and type IV secretion system-related genes were overabundant in the contaminated mats. Xenobiotic degradation metabolism was minor in the metagenomes of both mats, and only the expression of genes involved in polycyclic aromatic hydrocarbon degradation was higher in the contaminated mat. Interestingly, the expression rates of genes involved in hydrocarbon activation decreased during the 1-year study period, concomitant with the decrease in easily degradable hydrocarbons, suggesting a transient effect of hydrocarbon contamination. Alteromonadales and Oceanospirillales hydrocarbonoclastic bacteria appeared to be key in hydrocarbon remediation in the contaminated mat. Overall, the contaminated microbial mat was able to cope with hydrocarbon contamination and displayed an adaptive functioning that modified seasonal behaviour.Zinc is required for the regulation of proliferation, metabolism, and cell signaling. It is an intracellular second messenger, and the cellular level of ionic, mobile zinc is strictly controlled by zinc transporters. In mammals, zinc homeostasis is primarily regulated by ZIP and ZnT zinc transporters. The importance of these transporters is underscored by the list of diseases resulting from changes in transporter expression and activity. However, despite numerous structural studies of the transporters revealing both zinc binding sites and motifs important for transporter function, the exact molecular mechanisms regulating ZIP and ZnT activities are still not clear. For example, protein phosphorylation was found to regulate ZIP7 activity resulting in the release of Zn2+ from intracellular stores leading to phosphorylation of tyrosine kinases and activation of signaling pathways. In addition, sequence analyses predict all 24 human zinc transporters to be phosphorylated suggesting that protein phosphorylation is important for regulation of transporter function. This review describes how zinc transporters are implicated in a number of important human diseases. It summarizes the current knowledge regarding ZIP and ZnT transporter structures and points to how protein phosphorylation seems to be important for the regulation of zinc transporter activity. The review addresses the need to investigate the role of protein phosphorylation in zinc transporter function and regulation, and argues for a pressing need to introduce quantitative phosphoproteomics to specifically target zinc transporters and proteins involved in zinc signaling. Finally, different quantitative phosphoproteomic strategies are suggested.