https://www.selleckchem.com/products/ms-275.html 6-36.1%), while the average particle size and solubility values of spray-dried preparations were 2.9-13.2 μm and >86%, respectively. In contrast to the plain compounds, the addition of any of the microparticle dried preparations allowed obtaining well-conformed surimi gels. The ACE-inhibitory capacity of the surimi gels after sGID was increased by the addition of any of the compounds studied, but to a lesser extent by their entrapment forms (except with the entrapped SL). The antioxidant activities of gels with the entrapped compounds were even lower than those of gels without bioactives in some cases. In conclusion, the addition of dried microparticles did not increase the biological activity as compared to the plain compounds; however, they were beneficial to ensure adequate gel consistency.We study by scanning thermal microscopy the nanoscale thermal conductance of films (40-400 nm thick) of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT-C8). We demonstrate that the out-of-plane thermal conductivity is significant along the interlayer direction, larger for BTBT (0.63 ± 0.12 W m-1 K-1) compared to C8-BTBT-C8 (0.25 ± 0.13 W m-1 K-1). These results are supported by molecular dynamics calculations (approach to equilibrium molecular dynamics method) performed on the corresponding molecular crystals. The calculations point to significant thermal conductivity (3D-like) values along the 3 crystalline directions, with anisotropy factors between the crystalline directions below 1.8 for BTBT and below 2.8 for C8-BTBT-C8, in deep contrast with the charge transport properties featuring a two-dimensional character for these materials. In agreement with the experiments, the calculations yield larger values in BTBT compared to C8-BTBT-C8 (0.6-1.3 W m-1 K-1versus 0.3-0.7 W m-1 K-1, respectively). The weak thickness dependence of the nanoscale thermal resistance is in agr