Sustainable resource recovery is the key to manage the overburden of various waste entities of mining practices. The present study demonstrates for the first time a novel approach for iron recovery and biodiesel yield from two acid-adapted microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, grown in synthetic acid mine drainage (SAMD). Virtually, there was no difference in the growth of the strain MAS3 both in Bold's basal medium (control) and SAMD. Using the IC50 level (200 mg L-1) and a lower concentration (50 mg L-1) of iron in SAMD, the cell granularity, exopolysaccharide (EPS) secretion, iron recovery, and biodiesel were assessed in both the strains. Both cell granularity and accumulation of EPS were significantly altered under metal stress in SAMD, resulting in an increase in total accumulation of iron. Growth of the microalgal strains in SAMD yielded 12-20% biodiesel, with no traces of heavy metals, from the biomass. The entire amount of iron, accumulated intracellularly, was recovered in the residual biomass. Our results on the ability of the acid-adapted microalgal strains in iron recovery and yield of biodiesel when grown in SAMD indicate that they could be the potential candidates for use in bioremediation of extreme habitats like AMD. Copyright © 2020 American Chemical Society.The elimination of numerous endogenous compounds and xenobiotics via glucuronidation by uridine-5'-diphosphate glycosyltransferase enzymes (UGTs) is an essential process of the body's chemical defense system. UGTs have distinct but overlapping substrate preferences, but the molecular basis for their substrate specificity remains poorly understood. Three-dimensional protein structures can greatly enhance our understanding of the interactions between enzymes and their substrates, but because of the inherent difficulties in purifying and crystallizing integral endoplasmic reticulum membrane proteins, no complete mammalian UGT structure has yet been produced. To address this problem, we have created a homology model of UGT1A6 using I-TASSER to explore, in detail, the interactions of human UGT1A6 with its substrates. Ligands were docked into our model in the presence of the cosubstrate uridine-5'-diphosphate-glucuronic acid, interacting residues were examined, and poses were compared to those cocrystallized with various plant and bacterial glycosyltransferases (GTs). Our model structurally resembles other GTs, and docking experiments replicated many of the expected UGT-substrate interactions. Some bias toward the template structures' protein-substrate interactions and binding preferences was evident. Copyright © 2020 American Chemical Society.Carbonaceous or oxy-carbon species are intermediates formed during C x H y combustion on a Pt n /Al2O3 catalyst, which contain carbon, hydrogen, and oxygen atoms. The accumulation of the carbonaceous species, arguably, leads to catalytic deactivation; therefore, their removal is of importance. As the diffusion process is occasionally the rate-determining step in the growth of carbonaceous species, the present study aims to reveal the diffusion mechanisms. The free energy barriers of acetate, formate, and methoxy diffusion on the (100)-γ-Al2O3 surface were evaluated through extensive metadynamics simulations at the density-functional tight-binding level. The present work deduces that each adopted carbonaceous species exhibits different diffusion mechanisms and supports experimental evidence that the acetate species exhibits the slowest diffusivity among the adopted carbonaceous species. Copyright © 2020 American Chemical Society.In this study, controlled synthesis of hollow mesoporous silica nanoreactors with small manganese oxide nanoparticles in their cavities (Mn x O y @HMSNs) is reported, and the dye degradation performance in the presence of hydrogen peroxide over Mn x O y @HMSNs is investigated. Specifically, triple ligands (a compound with three dipicolinic acid groups) were used to coordinate manganese ions to form negatively charged coordination complex networks, which further combine with positively charged copolymers to obtain metal ion-containing polymer micelles. Following silica deposition onto micellar coronas and calcinations simultaneously result in hollow mesoporous silica nanoreactors and manganese oxide nanoparticles in their cavities. In this work, the influences of synthetic parameters on the structures are studied in detail. The obtained Mn x O y @HMSNs show greatly enhanced activity and stability for a series of dye degradations. The performance enhancement is ascribed to their unique nanostructures, where mesoporous silica walls provide protection to the inner Mn x O y nanoparticles and the small size of the manganese oxide nanoparticles greatly enhances the dye degradation activity. Copyright © 2020 American Chemical Society.Fe-supported heterogeneous catalysts are used for various reactions, including ammonia synthesis, Fischer-Tropsch synthesis, and exhaust gas cleaning. For the practical use of Fe-supported catalysts, suppression of Fe particle agglomeration is the most important issue to be resolved. As described herein, we found that Al doping in an oxide support suppresses agglomeration of the supported Fe particle. Experimental and computational studies revealed two tradeoff Al doping effects the Fe particle size decreased and remained without agglomeration by virtue of the anchoring effect of doped Al. Also, some Fe atoms anchored by Al cannot function as an active site because of bonding with oxygen atoms. https://www.selleckchem.com/products/chir-98014.html Using an appropriate amount of Al doping is effective for increasing the number of active Fe sites and catalytic activity. This optimized catalyst showed high practical activity and stability for low-temperature ammonia synthesis in an electric field. The optimized catalyst of 12.5 wt % Fe/Ce0.4Al0.1Zr0.5O2-δ showed the highest ammonia synthesis rate (2.3 mmol g-1 h-1) achieved to date under mild conditions (464 K, 0.9 MPa) in an electric field among the Fe catalysts reported. Copyright © 2020 American Chemical Society.In this study, natural clay (NC) was collected from Saudi Arabia and modified by cocamidopropyl betaine (CAPB) at different conditions (CAPB concentration, reaction time, and reaction temperature). NC and modified clay (CAPB-NC) were characterized using X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and N2 adsorption at 77 K. The adsorption efficiency of NC and CAPB-NC toward Pb2+ and reactive yellow 160 dye (RY160) was evaluated. The adsorption process was optimized in terms of solution initial pH and adsorbent dosage. Finally, the adsorption kinetics and isotherms were studied. The results indicated that NC consists of agglomerated nonporous particles composed of quartz and kaolinite. CAPB modification reduced the specific surface area and introduced new functional groups by adsorbing on the NC surface. The concentration of CAPB affects the adsorption of RY160 tremendously; the optimum concentration was 2 times the cation exchange capacity of NC.