Glyphosate (GLY) is a broad-spectrum herbicide and is the most used pesticide worldwide. This vast usage has raised strong interest in the ecotoxicological impacts and human risks, with contamination of water being a major concern. Decentralized analytical techniques for water monitoring are of high importance. In this work, we present a small, low-cost, and time-effective electrochemical, chip-based microfluidic device for direct electrochemical detection of GLY downstream of a molecularly imprinted polymer (MIP) concentrator. We studied the electrochemical behavior of GLY and its metabolite aminomethylphosphonic acid (AMPA) using cyclic voltammetry with noble metal electrodes in acidic, neutral, and basic media. A chronoamperometric sensor protocol was developed for sensitive and selective GLY measurements on gold electrodes. The optimized protocol was transferred to a chip-based microsensor platform for online and real-time detection of GLY in a microfluidic setup. The results in the range from 0 to 50 μM GLY in 0.5 M H2SO4 show high linearity and a sensitivity of 10.3 ± 0.6 μA mm-2 mM-1 for the chip-based microfluidic platform. Successful recovery of GLY concentrated from untreated tap water and its precise detection from low volumes demonstrates the advantages of our system.There is an obvious gap between efforts dedicated to the control of chemicophysical and morphological properties of catalyst active phases and the attention paid to the search of new materials to be employed as functional carriers in the upgrading of heterogeneous catalysts. Economic constraints and common habits in preparing heterogeneous catalysts have narrowed the selection of active-phase carriers to a handful of materials oxide-based ceramics (e.g. Al2O3, SiO2, TiO2, and aluminosilicates-zeolites) and carbon. However, these carriers occasionally face chemicophysical constraints that limit their application in catalysis. For instance, oxides are easily corroded by acids or bases, and carbon is not resistant to oxidation. Therefore, these carriers cannot be recycled. Moreover, the poor thermal conductivity of metal oxide carriers often translates into permanent alterations of the catalyst active sites (i.e. metal active-phase sintering) that compromise the catalyst performance and its lifetime on run. Therve of a given chemical reaction, highlighting all improvements rising from the use of SiC in terms of activity, selectivity, and process sustainability. We feel that the experienced viewpoint of SiC-based catalyst producers and end users (these authors) and their critical presentation of a comprehensive overview on the applications of SiC in catalysis will help the readership to create its own opinion on the central role of SiC for the future of heterogeneous catalysis.We present a microfluidic approach that utilizes temperature-responsive and biocompatible palm oil as the shell material in microcapsules to simultaneously achieve hermetic sealing as well as on-demand temperature-triggered release of the encapsulated actives. Unlike common paraffin waxes (e.g., eicosane), microcapsule shells comprising palm oil do not form pores or cracks during freezing and provide a hermetic seal, a nearly perfect seal that separates the core containing the actives from the surrounding environment over a prolonged period of time. This allows effective isolation and protection of complex cargoes such as small molecules with high diffusivity, strong acids, and cosmetic actives including niacinamide. Moreover, the palm oil shell melts above the defined melting temperature, allowing the on-demand release of the encapsulated actives. Furthermore, palm oil is biocompatible, is edible, and leaves a minimal footprint when used in personal care and cosmetic products, offering new perspectives in the design of microcapsules for cosmetic applications.Cytochrome P450 2C8 (CYP2C8) is a major drug-metabolizing enzyme in humans and is responsible for the metabolism of ∼5% drugs in clinical use. Thus, inhibition of CYP2C8, which causes potential adverse drug events, cannot be neglected. The in vitro drug interaction studies guidelines for industry issued by the FDA also point out that it needs to be determined whether investigated drugs are CYP2C8 inhibitors before clinical trials. However, current studies mainly focus on predicting the inhibitors of other major P450 enzymes, and the importance of CYP2C8 inhibition has been overlooked. Therefore, there is a need to develop models for identifying potential CYP2C8 inhibition. In this study, in silico classification models for predicting CYP2C8 inhibition were built by five machine-learning methods combined with nine molecular fingerprints. The performance of the models built was evaluated by test and external validation sets. The best model had AUC values of 0.85 and 0.90 for the test and external validation sets, respectively. The applicability domain was analyzed based on the molecular similarity and exhibited an impact on the improvement of prediction accuracy. Furthermore, several representative privileged substructures such as 1H-benzo[d]imidazole, 1-phenyl-1H-pyrazole, and quinoline were identified by information gain and substructure frequency analysis. https://www.selleckchem.com/products/nik-smi1.html Overall, our results would be helpful for the prediction of CYP2C8 inhibition.The increasing interest in developing safe and sustainable energy storage systems has led to the rapid rise in attention to superconcentrated electrolytes, commonly called water-in-salt (WiS). Several works indicate that the transport properties of these liquid electrolytes are related to the presence of nanodomains, but a detailed characterization of such structure is missing. Here, the structural nano-heterogeneity of lithium WiS electrolytes, comprising lithium trifluoromethanesulfonate (LiTf) and bis(trifluoromethanesulfonyl)imide (LiTFSI) solutions as a function of concentration and temperature, was assessed by resorting to the analysis of small-angle neutron scattering (SANS) patterns. Variations with the concentration of a correlation peak, rather temperature-independent, in a Q range around 3.5-5 nm-1 indicate that these electrolytes are composed of nanometric water-rich channels percolating a 3D dispersing anion-rich network, with differences between Tf and TFSI anions related to their distinct volumes and interactions.