https://www.selleckchem.com/JAK.html Furthermore, the prepared FAPbBr3/PVDF composite was found to be an efficient candidate for light detection applications. A simple planar photodetector was fabricated with the 8.0 wt% FAPbBr3 NP-loaded PVDF composite, which displayed very high responsivity (8 A/W) and response speed of 2.6 s. Thus, this exclusive combination of synthesis and fabrication for the preparation of electro-active films opens a new horizon in the piezoelectric community for effective energy harvesting and light detector applications.Organic phototheranostic nanomedicines with an optimized near-infrared (NIR) biological transparent window (700-900 nm) are highly desirable for the diagnosis and treatment of deep-seated tumors in clinic. As excellent organic photosensitizers for photodynamic therapy (PDT) with outstanding photo- and thermo-stability, phthalocyanines (Pcs) have been used as the building blocks of single-component nanomedicines. However, to the best of our knowledge, all the Pc-based single-component self-assemblies reported to date are of an H-aggregate nature. This results in the simultaneous self-quenching of fluorescence emission and photodynamic activity as well as greatly reduced tissue penetration due to blue-shifted absorption. In the present work, intramolecular hydrogen bonding was formed between the two long and flexible axial NH2-terminated diethylene glycol ligands of the amphiphilic SiPc molecule (SiPc-NH2) in solution, leading to the employment of a cis-conformation of this molecule according to the 1H-NMR spectroscopy result, which as a building block then further self-assembled into monodisperse nanospheres (SiPcNano) with a J-aggregation nature on the basis of electronic absorption spectroscopic results. As a result, SiPcNano exhibited significantly enhanced red-shifted absorption in the NIR range of 750-850 nm and fluorescence emission. This in combination with the increased photodynamic effect for SiPcNano triggered by th