https://www.selleckchem.com/products/Staurosporine.html The in vitro findings were verified in vivo by characterizing changes in the expression of cofilin/LIMK in xenograft tumors in immunodeficient mice. It was found that ATL activated cofilin through the targeted inhibition of LIMK enzyme activity and it thus upregulated the ratio of G/F actin, and inhibited GBM cell migration and invasion. Conversely, the activation of cofilin and G‑actin could be co‑transferred to the mitochondria to initiate the mitochondrial‑cytochrome c pathway to induce apoptosis. On the whole, the findings of the present study further illustrate the molecular mechanisms through which ATL inhibits the metastatic phenotype of GBM cells and induces apoptosis. Given previous findings, it can be deduced that ATL can function through multiple pathways and has multiple targets in GBM models, highlighting its potential for use in clinical applications.Recent studies have reported that the expression levels of far upstream element‑binding protein 1 (FUBP1) were upregulated and served a crucial role in several types of cancer. However, the underlying molecular mechanisms and clinical significance of FUBP1 in pancreatic adenocarcinoma (PAAD) remain unclear. The present study aimed to determine the expression levels of FUBP1 in patients with PAAD and subsequently investigated the biological functions and mechanisms of FUBP1 using in vitro assays. FUBP1 expression levels and survival outcomes in patients with PAAD were analyzed using The Cancer Genome Atlas and starBase databases. Reverse transcription‑quantitative PCR was used to analyze the mRNA expression levels of FUBP1 in PAAD and adjacent normal tissues. In addition, the expression of FUBP1 was knocked down with small interfering RNA and overexpressed using FUBP1‑overexpressed plasmids, and the effects on biological functions, including cell proliferation, migration and invasion, were investigated. Wester effects. In conclusion, the findings of th