https://www.selleckchem.com/products/chir-124.html The amount of waste activated sludge (WAS) has grown dramatically in China. WAS is considered as a problematic and hazardous waste, which should be disposed in a safe and sustainable manner. In order to recycle WAS to an anaerobic granular sludge (AnGS) process for anaerobic digestion, Fe powder and steel slags (rusty and clean slags) were used to enhance the granulation process. The results demonstrated that both rusty and clean slags encouraged the development of granular sludge. Adding 10 g/L clean slags could increase AnGS granulation rate by 37%. In the presence of clean slags, extracellular polymeric substances (EPS) concentration in granules increased noticeably to 715 mg/g mixed liquor suspended solids (MLSS). High throughput sequencing analysis exhibited more diversity and higher abundance of functional microbial communities in the batch bottle with 10 g/L clean slags. This study suggested that adding clean slags at 10 g/L dosage was a sustainable and effective method for the sludge granulation.The coming global phosphorus (P) crisis makes P recovery from wastewater become an inevitable choice. Hydroxyapatite (HAP) crystallization is an important approach for P recovery, but its requirements for high alkali and acid are unaffordable. Thus, a microbial electrolysis phosphorus-recovery cell (MEPRC) was developed to cut down the alkali cost via raising the wastewater pH (over 11) in the cathode chamber, and the acid cost via producing acid in the acid-production chamber. HAP was confirmed to be the final recovered products, and P recovery efficiency over 80% was achieved at 24-h operation. To optimize the P recovery performance of this system, the effects of the key factors including applied voltage, P initial concentration and Ca/P ration were investigated. High voltage could promote the rate of P recovery but had slight effect on the eventual recovery efficiency (elevated from 88.5 to 91.1%). High P initial