The 3D prints also enable the user to easily disassemble the machine for quick storage or transportation to the field. Moreover, this study makes greater use of magnets and magnetic paint to tether insects with minimal stress. Lastly, this protocol details a versatile analysis of flight data through computer scripts that efficiently separate and analyze differentiable flight trials within a single recording. Although more labor-intensive, applying the tools available in makerspaces and on online 3D modeling programs facilitates multidisciplinary and process-orientated practices and helps researchers avoid costly, premade products with narrowly adjustable dimensions. By taking advantage of the flexibility and reproducibility of technology in makerspaces, this protocol promotes creative flight mill design and inspires open science.Zebrafish has emerged as an important animal model to study human diseases, especially cancer. Along with the robust transgenic and genome editing technologies applied in zebrafish modeling, the ease of maintenance, high-yield productivity, and powerful live imaging altogether make the zebrafish a valuable model system to study metastasis and cellular and molecular bases underlying this process in vivo. The first zebrafish neuroblastoma (NB) model of metastasis was developed by overexpressing two oncogenes, MYCN and LMO1, under control of the dopamine-beta-hydroxylase (dβh) promoter. Co-overexpressed MYCN and LMO1 led to the reduced latency and increased penetrance of neuroblastomagenesis, as well as accelerated distant metastasis of tumor cells. This new model reliably reiterates many key features of human metastatic NB, including involvement of clinically relevant and metastasis-associated genetic alterations; natural and spontaneous development of metastasis in vivo; and conserved sites of metastases. Therefore, the zebrafish model possesses unique advantages to dissect the complex process of tumor metastasis in vivo.Unilateral spatial neglect (USN) is a syndrome characterized by inattention to or inaction in one side of space and affects between 23-46% of acute stroke survivors. The diagnosis and characterization of these symptoms in individual patients can be challenging and often requires skilled clinical staff. Virtual reality (VR) presents an opportunity to develop novel assessment tools for patients with USN. We aimed to design and build a VR tool to detect and characterize subtle USN symptoms, and to test the tool on subjects treated with inhibitory repetitive transcranial magnetic stimulation (TMS) of cortical regions associated with USN. We created three experimental conditions by applying TMS to two distinct regions of cortex associated with visuospatial processing- the superior temporal gyrus (STG) and the supramarginal gyrus (SMG) - and applied sham TMS as a control. https://www.selleckchem.com/products/liraglutide.html We then placed subjects in a virtual reality environment in which they were asked to identify the flowers with lateral asymmetries of flowers distributed across bushes in both hemispaces, with dynamic difficulty adjustment based on each subject's performance. We found significant differences in average head yaw between subjects stimulated at the STG and those stimulated at the SMG and marginally significant effects in the average visual axis. VR technology is becoming more accessible, affordable, and robust, presenting an exciting opportunity to create useful and novel game-like tools. In conjunction with TMS, these tools could be used to study specific, isolated, artificial neurological deficits in healthy subjects, informing the creation of VR-based diagnostic tools for patients with deficits due to acquired brain injury. This study is the first to our knowledge in which artificially generated USN symptoms have been evaluated with a VR task.Female mosquitoes are the deadliest animals on earth, claiming the lives of more than 1 million people every year due to pathogens they transmit when acquiring a blood-meal. To locate a host to feed on, mosquitoes rely on a wide range of sensory cues, including visual, mechanical, thermal, and olfactory. The study details a technique, electroantennography (EAG), that allows researchers to assess whether the mosquitoes can detect individual chemicals and blends of chemicals in a concentration-dependent manner. When coupled with gas-chromatography (GC-EAG), this technique allows to expose the antennae to a full headspace/complex mixture and determines which chemicals present in the sample of interest, the mosquito can detect. This is applicable to host body odors as well as plant floral bouquets or other ecologically relevant odors (e.g., oviposition sites odorants). Here, we described a protocol that permits long durations of preparation responsiveness time and is applicable to both female and male mosquitoes from multiple genera, including Aedes, Culex, Anopheles, and Toxorhynchites mosquitoes. As olfaction plays a major part in mosquito-host interactions and mosquito biology in general, EAGs and GC-EAG can reveal compounds of interest for the development of new disease vector control strategies (e.g., baits). Complemented with behavioral assays, the valence (e.g., attractant, repellent) of each chemical can be determined.The shoulder is one of the human body's most complex joint systems, with motion occurring through the coordinated actions of four individual joints, multiple ligaments, and approximately 20 muscles. Unfortunately, shoulder pathologies (e.g., rotator cuff tears, joint dislocations, arthritis) are common, resulting in substantial pain, disability, and decreased quality of life. The specific etiology for many of these pathologic conditions is not fully understood, but it is generally accepted that shoulder pathology is often associated with altered joint motion. Unfortunately, measuring shoulder motion with the necessary level of accuracy to investigate motion-based hypotheses is not trivial. However, radiographic-based motion measurement techniques have provided the advancement necessary to investigate motion-based hypotheses and provide a mechanistic understanding of shoulder function. Thus, the purpose of this article is to describe the approaches for measuring shoulder motion using a custom biplanar videoradiography system.