© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the Korean Society of Mycology.Two fungal species of ascomycetes were discovered during the screening of soil microflora from the Gangwon Province in Korea Didymella chlamydospora sp. nov. (YW23-14) and Microdochium salmonicolor sp. nov. (NC14-294). Morphologically, YW23-14 produces smaller chlamydospores (8.0-17.0 × 7.0-15.0 µm) than D. glomerata and D. musae. The strain NC14-294 was characterized by smaller conidiogenous cells (4.9-8.8 × 2.0-3.2 µm) compared with the closest strains M. fisheri and M. phragmitis. The detailed descriptions, illustrations, and discussions regarding the morphological and phylogenetical analyses of the closely related species are provided to support the novelty of each species. Thus, YW23-14 and NC14-294 are described here as newly discovered species. © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the Korean Society of Mycology.Pentraxin 3 (PTX3) is a soluble pattern recognition receptor (PRR), which is produced by several kinds of cells, such as neutrophils, dendritic cells, macrophages, and epithelial cells. PTX3 is known to play an important protective effect against Aspergillus. Genetic linkage in gene-targeted mice and human PTX3 plays a non-redundant role in the immune protection against specific pathogens, especially Aspergillus. Recent studies have shown that the polymorphism of PTX3 is associated with increased susceptibility to invasive aspergillosis (IA). In this review, we provide an overview of these studies that underline the potential of PTX3 in diagnosis and therapy of IA. © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the Korean Society of Mycology.Most patients with hepatocellular carcinoma (HCC) are diagnosed at an advanced stage of disease. Until recently, systemic treatment options that showed survival benefits in HCC have been limited to tyrosine kinase inhibitors, antibodies targeting oncogenic signaling pathways or VEGF receptors. The HCC tumor microenvironment is characterized by a dysfunction of the immune system through multiple mechanisms, including accumulation of various immunosuppressive factors, recruitment of regulatory T cells and myeloid-derived suppressor cells, and induction of T cell exhaustion accompanied with the interaction between immune checkpoint ligands and receptors. Immune checkpoint inhibitors (ICIs) have been interfered this interaction and have altered therapeutic landscape of multiple cancer types including HCC. In this review, we discuss the use of anti-PD-1, anti-PD-L1, and anti-CTLA-4 antibodies in the treatment of advanced HCC. However, ICIs as a single agent do not benefit a significant portion of patients. Therefore, various clinical trials are exploring possible synergistic effects of combinations of different ICIs (anti-PD-1/PD-L1 and anti-CTLA-4 antibodies) or ICIs and target agents. https://www.selleckchem.com/products/tertiapin-q.html Combinations of ICIs with locoregional therapies may also improve therapeutic responses. Immune checkpoint inhibitors (ICIs) have shown remarkable benefit in the treatment of patients with non-small-cell lung cancer (NSCLC) and have emerged as an effective treatment option even in the first-line setting. ICIs can block inhibitory pathways that restrain the immune response against cancer, restoring and sustaining antitumor immunity. Currently, there are 4 PD-1/PD-L1 blocking agents available in clinics, and immunotherapy-based regimen alone or in combination with chemotherapy is now preferred option. Combination trials assessing combination of ICIs with chemotherapy, targeted therapy and other immunotherapy are ongoing. Controversies remain regarding the use of ICIs in targetable oncogene-addicted subpopulations, but their initial treatment recommendations remained unchanged, with specific tyrosine kinase inhibitors as the choice. For the majority of patients without targetable driver oncogenes, deciding between therapeutic options can be difficult due to lack of direct cross-comparison studies. There are continuous efforts to find predictive biomarkers to find those who respond better to ICIs. PD-L1 protein expressions by immunohistochemistry and tumor mutational burden have emerged as most well-validated biomarkers in multiple clinical trials. However, there still is a need to improve patient selection, and to establish the most effective concurrent or sequential combination therapies in different NSCLC clinical settings. In this review, we will introduce currently used ICIs in NSCLC and analyze most recent trials, and finally discuss how, when and for whom ICIs can be used to provide promising avenues for lung cancer treatment. Immune checkpoint inhibitors (ICIs) have been changing the paradigm of cancer treatment. However, immune-related adverse effects (irAEs) have also increased with the exponential increase in the use of ICIs. ICIs can break up the immunologic homeostasis and reduce T-cell tolerance. Therefore, inhibition of immune checkpoint can lead to the activation of autoreactive T-cells, resulting in various irAEs similar to autoimmune diseases. Gastrointestinal toxicity, endocrine toxicity, and dermatologic toxicity are common side effects. Neurotoxicity, cardiotoxicity, and pulmonary toxicity are relatively rare but can be fatal. ICI-related gastrointestinal toxicity, dermatologic toxicity, and hypophysitis are more common with anti- CTLA-4 agents. ICI-related pulmonary toxicity, thyroid dysfunction, and myasthenia gravis are more common with PD-1/PD-L1 inhibitors. Treatment with systemic steroids is the principal strategy against irAEs. The use of immune-modulatory agents should be considered in case of no response to the steroid therapy. Treatment under the supervision of multidisciplinary specialists is also essential, because the symptoms and treatments of irAEs could involve many organs. Thus, this review focuses on the mechanism, clinical presentation, incidence, and treatment of various irAEs. Immune checkpoint blockade targeting PD-1 and PD-L1 has resulted in unprecedented clinical benefit for cancer patients. Anti-PD-1/PD-L1 therapy has become the standard treatment for diverse cancer types as monotherapy or in combination with other anti-cancer therapies, and its indications are expanding. However, many patients do not benefit from anti-PD-1/PD-L1 therapy due to primary and/or acquired resistance, which is a major obstacle to broadening the clinical applicability of anti-PD-1/PD-L1 therapy. In addition, hyperprogressive disease, an acceleration of tumor growth following anti-PD-1/PD-L1 therapy, has been proposed as a new response pattern associated with deleterious prognosis. Anti-PD-1/PD-L1 therapy can also cause a unique pattern of adverse events termed immune-related adverse events, sometimes leading to treatment discontinuation and fatal outcomes. Investigations have been carried out to predict and monitor treatment outcomes using peripheral blood as an alternative to tissue biopsy. This review summarizes recent studies utilizing peripheral blood immune cells to predict various outcomes in cancer patients treated with anti-PD-1/PD-L1 therapy.