Average correlations between response caution and UPPS-P subscales ranged from rho = -0.02 to -0.04. While the construct of response caution has demonstrated value in understanding individual differences in cognition, brain functioning and aging; the factors underlying what has been called "impulsive information processing" appear to be distinct from the concept of impulsivity derived from self-report.The first total synthesis of the n-3 docosapentaenoic derived oxygenated product MaR2n-3 DPA has been achieved. The 13R and 14S stereogenic centers were introduced using 2-deoxy-d-ribose in a chiral pool strategy. The geometry of the Z,E,E-triene moiety was prepared using highly E-selective Wittig- and Takai-olefination reactions as well as the Z-stereoselective Lindlar reduction. LC/MS-MS data of synthetic MaR2n-3 DPA matched data for the biosynthetic formed product that enabled the configurational assignment of this oxygenated natural product to be (7Z,9E,11E,13R,14S,16Z,19Z)-13,14-dihydroxydocosa-7,9,11,16,19-pentaenoic acid. To review research on sexual and gender minority (SGM) families-including lesbian, gay, bisexual, transgender, queer, asexual, and intersex (LGBTQAI+) families- from 2010-2020. Research on the SGM population has increased and diversified in the past decade. This paper reviews three subareas that make up the majority of research on SGM families today (1) SGM family of origin relationships, (2) SGM intimate relationships, and (3) SGM-parent families. This review also highlights three main gaps in the existing literature (1) a focus on same-sex and gay and lesbian families (and to a lesser extent bisexual and transgender families) and a lack of attention to the families of single SGM people as well as intersex, asexual, queer, polyamorous, and other SGM families; (2) an emphasis on white, socioeconomically advantaged SGM people and a failure to account for the significant racial-ethnic and socioeconomic diversity in the SGM population; and (3) a lack of integration of SGM experiences across the life course, from childhood to old age. The next decade should aim to examine the full range of SGM family ties, include more vigorous examinations of race-ethnicity and socioeconomic status, and develop more robust accounts of family across the life course with novel theory and data sources across the methodological spectrum. The next decade should aim to examine the full range of SGM family ties, include more vigorous examinations of race-ethnicity and socioeconomic status, and develop more robust accounts of family across the life course with novel theory and data sources across the methodological spectrum.The eight iron meteorites currently classified as belonging to the IIC group were characterized with respect to the compositions of 21 siderophile elements. Several of these meteorites were also characterized for mass independent isotopic compositions of Mo, Ru and W. Chemical and isotopic data for one, Wiley, indicate that it is not a IIC iron meteorite and should be reclassified as ungrouped. The remaining seven IIC iron meteorites exhibit broadly similar bulk chemical and isotopic characteristics, consistent with an origin from a common parent body. Variations in highly siderophile element (HSE) abundances among the members of the group can be well accounted for by a fractional crystallization model with all the meteorites crystallizing between ~10 and ~26% of the original melt, assuming initial S and P concentrations of 8 wt.% and 2 wt.%, respectively. https://www.selleckchem.com/products/pu-h71.html Abundances of HSE estimated for the parental melt suggest a composition with chondritic relative abundances of HSE ~6 times higher than in bulk carbonaceouNucleosynthetic models indicate that Mo and 183W s-process variability should correlate with Ru isotopic variability, which is not observed. This may indicate the IIC irons and Wiley experienced selective thermal processing of nucleosynthetic carriers, or are genetically distinct from the CC and NC precursor materials.The origin of the IAB main group (MG) iron meteorites is explored through consideration of 182W isotopic compositions, thermal modeling of 26Al decay, and mass independent (nucleosynthetic) Mo isotopic compositions of planetesimals formed in the noncarbonaceous (NC) protosolar isotopic reservoir. A refined 182W model age for the meteorites Campo del Cielo, Canyon Diablo, and Nantan suggests that the IAB-MG parent body underwent some form of metal-silicate segregation as early as 5.3 ± 0.4 Myr after calcium-aluminum rich inclusion (CAI) formation or as late as 13.8 ± 1.4 Myr after CAI formation. If melting of the IAB-MG occurred prior to 7 Myr after CAI formation, it was likely driven by 26Al decay for a parent body radius >40 km. Otherwise, additional heat from impact is required for melting metal this late in Solar System history. If melting was partially or wholly the result of internal heating, a thermal model of 26Al decay heat production constrains the accretion age of the IAB-MG parent body to ~1.7 ± 0.4 Myr after CAI formation. If melting was, instead, dominantly caused by impact heating, thermal modeling suggests the parent body accreted more than 2 Myr after CAI formation. Comparison of Mo mass independent isotopic compositions of the IAB-MG to other NC bodies with constrained accretion ages suggests that the Mo isotopic composition of the NC reservoir changed with time, and that the IAB-MG parent body accreted between 2 to 3 Myr after CAI formation, thus requiring an origin by impact. The relationship between nucleosynthetic Mo isotopic compositions and accretion ages of planetesimals from the NC reservoir suggests that isotopic heterogeneity developed from either addition of s-process material to, or removal of coupled r-/p-process material from the NC reservoir.We investigated the dynamical stability of high-multiplicity Kepler and K2 planetary systems. Our numerical simulations find instabilities in ~ 20% of the cases on a wide range of timescales (up to 5×109 orbits) and over an unexpectedly wide range of initial dynamical spacings. To identify the triggers of long-term instability in multi-planet systems, we investigated in detail the five-planet Kepler-102 system. Despite having several near-resonant period ratios, we find that mean motion resonances are unlikely to directly cause instability for plausible planet masses in this system. Instead, we find strong evidence that slow inward transfer of angular momentum deficit (AMD) via secular chaos excites the eccentricity of the innermost planet, Kepler-102 b, eventually leading to planet-planet collisions in ~ 80% of Kepler-102 simulations. Kepler-102 b likely needs a mass ≳ 0.1M⊕, hence a bulk density exceeding about half Earth's, in order to avoid dynamical instability. To investigate the role of secular chaos in our wider set of simulations, we characterize each planetary system's AMD evolution with a "spectral fraction" calculated from the power spectrum of short integrations (~ 5 × 106 orbits).