qPCR analysis indicated that PhmiR156/157 modulates these traits mainly via down-regulating their PhSPL targets and subsequently decreasing the expression of flowering regulatory genes. Our results demonstrated that PhmiR156/157-PhSPL module has conserved but also divergent functions in the growth and development, which will help us deciphering the genetic basis for improvement of flower transition, plant architecture and organ development in petunia.Migraine afflicts more than one billion individuals worldwide and is a leading cause of years lived with disability. In about a third of individuals with migraine aura occur in relation to migraine headache. The common pathophysiological mechanisms underlying migraine headache and migraine aura are yet to be identified. Based on recent data, we hypothesized that levcromakalim, an ATP-sensitive potassium channel opener, would trigger migraine attacks with aura in migraine with aura patients.Recent large-scale integrative analyses (including Transcriptome-Wide Association Study [TWAS] and Summary-data-based Mendelian Randomization [SMR]) have identified multiple genes whose cis-regulated expression changes may confer risk of schizophrenia. Nevertheless, expression quantitative trait loci (eQTL) data and genome-wide associations used for integrative analyses were mainly from populations of European ancestry, resulting in potential missing of pivotal biological insights in other continental populations due to population heterogeneity. Here we conducted TWAS and SMR integrative analyses using blood eQTL (from 162 subjects) and GWAS data (22 778 cases and 35 362 controls) of schizophrenia in East Asian (EAS) populations. Both TWAS (P = 2.89 × 10-14) and SMR (P = 6.04 × 10-5) analyses showed that decreased TMEM180 mRNA expression was significantly associated with risk of schizophrenia. We further found that TMEM180 was significantly down-regulated in the peripheral blood of schizophrenia cases compared with controls (P = 8.63 × 10-4 in EAS sample), and its expression was also significantly lower in the brain tissues of schizophrenia cases compared with controls (P = 1.87 × 10-5 in European sample from PsychENCODE). Functional explorations suggested that Tmem180 knockdown affected neurodevelopment, ie, proliferation and differentiation of neural stem cells. RNA sequencing showed that pathways regulated by Tmem180 were significantly enriched in brain development and synaptic transmission. In conclusion, our study provides convergent lines of evidence for the involvement of TMEM180 in schizophrenia, and highlights the potential and importance of resource integration and sharing at this big data era in bio-medical research.Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics towards nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. https://www.selleckchem.com/products/pd0166285.html Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.Components of the endosomal sorting complex required for transport (ESCRTs) were first identified in a genetic screen in budding yeast as factors interfering with vacuolar protein sorting. In the last three decades, intensive studies have revealed the subunit composition of ESCRT-0, ESCRT-I, ESCRT-II, ESCRT-III, their structure, the assembling mechanisms as well as their molecular and physiological functions. In plants, ESCRTs are essential for development, growth, and stress responses. ESCRTs are best known for their function in endosomal trafficking, during which they are required for sorting ubiquitylated membrane proteins into intraluminal vesicles (ILVs) of multivesicular endosomes (MVEs). The formation of ILVs require the function of ESCRT-III, which has been shown to mediate membrane scission. Although the function of plant ESCRTs has been predominantly discussed in the context of endosomal trafficking, recent studies in other model organisms revealed a versatile role of ESCRTs in diverse cellular events with broad physiological implications. The non-endosomal functions of ESCRTs include cytokinesis, viral budding, autophagy, nuclear envelope reformation and membrane repair, although many of these have not yet been studied in plants. In this review, recent findings on non-endosomal ESCRT functions in plant, yeast and animals are highlighted and discussed.Because of their abundance and extensive phosphorylation, numerous thylakoid proteins stand out amongst the phosphoproteins of plants and algae. In particular, subunits of Light Harvesting Complex II (LHCII) and of Photosystem II (PSII) are dynamically phosphorylated and de-phosphorylated in response to light conditions and metabolic demands. These phosphorylations are controlled by evolutionarily conserved thylakoid protein kinases and counteracting protein phosphatases, which have distinct but partially overlapping substrate specificities. The best characterized are the kinases STATE TRANSITION 7 (STN7/STT7) and STATE TRANSITION 8 (STN8), and the antagonistic phosphatases PROTEIN PHOSPHATASE 1/THYLAKOID ASSOCIATED PHOSPHATASE 38 (PPH1/TAP38) and PHOTOSYSTEM II CORE PHOSPHATASE (PBCP). The phosphorylation of LHCII is mainly governed by STN7 and PPH1/TAP38 in plants. LHCII phosphorylation is essential for state transitions, a regulatory feedback mechanism that controls allocation of this antenna to either PSII or PSI, and thus maintains the redox balance of the electron transfer chain.