https://www.selleckchem.com/products/milademetan.html Leishmaniasis is one of the most neglected tropical diseases that demand immediate attention to the identification of new drug targets and effective drug candidates. The present study demonstrates the possibility of using threonine synthase (TS) as a putative drug target in leishmaniasis disease management. We report the construction of an effective homology model of the enzyme that appears to be structurally as well as functionally well conserved. The 200 nanosecond molecular dynamics data on TS with and without pyridoxal phosphate (PLP) shed light on mechanistic details of PLP-induced conformational changes. Moreover, we address some important structural and dynamic interactions in the PLP binding region of TS that are in good agreement with previously speculated crystallographic estimations. Additionally, after screening more than 44,000 compounds, we propose 10 putative inhibitor candidates for TS based on virtual screening data and refined Molecular Mechanics Generalized Born Surface Area calculations. We expect that structural and functional dynamics data disclosed in this study will help initiate experimental endeavors toward establishing TS as an effective antileishmanial drug target.The Corona virus Disease (COVID-19) is caused because of novel coronavirus (SARS-CoV-2) pathogen detected in China for the first time, and from there it spread across the globe creating a worldwide pandemic of severe respiratory complications. The virus requires structural and non-structural proteins for its multiplication that are produced from polyproteins obtained by translation of its genomic RNA. These polyproteins are converted into structural and non-structural proteins mainly by the main protease (Mpro). A systematic screening of a drug library (having drugs and diagnostic agents which are approved by FDA or other world authorities) and the Asinex BioDesign library was carried out using pharmacophore and sequential co