All rights reserved.To find and to test the therapeutic effectiveness (and the limited adverse effects) of a new drug is a long and expensive process. It has been estimated a period of ten years and an expense of the order of one billion USD are required. Meanwhile, even if a promising molecule has been identified, there is the need for operative methods for its delivery. The extreme case is given by gene therapy, in which molecules with tremendous in-vitro efficacy cannot be used in practice because of the lack in useful vector systems to deliver them. Most of the recent efforts in pharmaceutical sciences are focused on the development of novel drug delivery systems (DDSs). In this review, the work done recently on the development and testing of novel DDSs, with particular emphasis on the results obtained by European research, is summarized. In the first section of the review the DDSs are analyzed accordingly with their scale-size starting from nano-scale (liposomes, nanoparticles), up to the micro-scale (microparticles), until the macroscopic world is reached (granules, matrix systems). In the following two sections, non-conventional testing methods (mechanical methods and bio-relevant dissolution methods) are presented; at last, the importance of mathematical modeling to describe drug release and related phenomena is reported. Proteins represent a group of biopolymers with interesting properties to be employed as raw materials in the preparation of nanoparticles for drug delivery purposes. Due to the inherent properties of proteins (i.e., biodegradability, amphiphilic properties, etc.) the resulting nanoparticles can be considered as versatility platforms for a variety of applications. Moreover, some proteins possess a GRAS (Generally Recognized as Safe) status or are considered as excipients by different Regulatory Agencies. As result of this, the resulting nanoparticles and potential translation to clinic would be facilitated, compared to other materials (i.e., polymers). This review is focused on the main proteins employed in the preparation of nanoparticles as well as the procedures permitting their transformation into nanoparticles able of accommodating a high variety of bioactive compounds and drugs. Moreover, the review also provides examples of application of nanoparticles prepared from albumins, globulins, prolamins or macromolecules derived from proteins. The use of water-insoluble carriers for amorphous solid dispersions (ASDs) has attracted more recent interest as the kinetic solubility profiles (KSP) from these systems can achieve a more sustained level of supersaturation when compared with ASDs based on water-soluble polymers. However, the effect of swelling capacity of water-insoluble carriers on the resulting KSP of ASDs has not been fully explored in terms of their achievable degree and extent of drug supersaturation. Thus, the objective of this study is to compare kinetic solubility profiles of ASDs based on commercially available water-insoluble carriers in order to bridge this knowledge gap and provide fundamental information important to the design of ASDs based on water-insoluble carriers. This was achieved by comparing the KSP from non-sink dissolution studies of ASDs of two model poorly-water soluble drugs, indomethacin (IND) and posaconazole (PCZ) based on commercially available water-insoluble carriers with different equilibrium water swelling ASDs. Finally, the existence of electrostatic polymer-drug interactions realized from our molecular dynamic simulations supports the observed impact of the large partitioning of the model drug IND between the polymer ED RS PO and the dissolution medium, thereby leading to a lower degree of supersaturation generation (or slower drug release) from this ASD. In this study, glimepiride and l-arginine (GA) binary mixtures at various molar ratios were prepared to evaluate whether they could improve the poor water solubility and dissolution characteristics of glimepiride. It was shown that glimepiride and arginine form a eutectic mixture, a type of crystalline solid dispersions, at a 11 M ratio and eutectic temperature of 426.9 K using a phase diagram constructed using differential scanning calorimetry (DSC) and thermo-microscopy. https://www.selleckchem.com/products/bpv-hopic.html The preserved characteristic powder X-ray diffraction (PXRD) patterns and infrared (IR) spectra of each material in those of GA binary mixtures confirmed the formation of eutectic mixture without molecular interaction in solid state. The formation of GA eutectic mixture (GAEM) resulted in the improvement of solubility through pH modification and the intermolecular interaction of glimepiride and l-arginine in aqueous mediums, thereby wettability and dissolution rate of glimepiride were also enhanced. The intermolecular interaction between glimepiride and l-arginine at a 11 stoichiometry of the complex in solution state was identified by phase solubility, stoichiometric determination, and solution state nuclear magnetic resonance (NMR) spectroscopy. Specific molecular interactions such as hydrogen bonding and hydrophobic interaction were suggested as main mechanisms of GA complexation in solution. Therefore, this study concludes that the GAEM could be an effective way to improve the solubility and dissolution rate of glimepiride. Co-amorphous systems have been increasingly investigated to improve the solubility and dissolution rate of poorly soluble drugs. Considering the ability of tannic acid (TA), a polyphenolic compound, to form hydrogen bonds with compounds that contain carbonyl groups, we hypothesized that tannic acid will also be effective in stabilizing amorphous form of drugs in co-amorphous systems. Co-amorphization by TA of two poorly soluble model drugs, carbamazepine (CBZ) and indomethacin (IND) was investigated. Tannic acid facilitated the amorphization of studied drugs and successful co-amorphous systems were obtained as proved by powder X-Ray diffraction (PXRD). Differential scanning calorimetry (DSC) confirmed the homogeneous structure as indicated by the existence of a single Tg for each co-amorphous product. The expected molecular interactions between phenolic groups in TA and carbonyl groups in the studied drugs (CBZ and IND) were confirmed by analyzing their infrared spectra. Drug-TA co-amorphous formulations showed an enhanced equilibrium solubility over the individual drugs.