Wild-type and Vienna-8 strain sterile males were used to quantify the sperm transferred at four mating durations (10, 30, 60, and 90 min) under laboratory conditions. To validate the reported quantitative method, our results were compared by counting sperm heads under a fluorescent microscope using the same experimental design. In addition, DNA samples were also evaluated and compared by conventional PCR. © The Author(s) 2020. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.During dispersal into fruit-bearing wild blueberry fields, blueberry maggot flies were highly active during all daylight hours as revealed by trap captures, although in one trial afternoon activity was greater than morning activity. Flies were not captured in traps at night, although observations in growth chambers showed that their activity at night, measured as displacement of position, was equal to daylight conditions. Flies were shown to fly at low altitude, just above the crop canopy, and screen fencing was shown to be effective at reducing colonization of plots, presumably due to their low height during flight. Over a 4-yr mark-capture study, colonization rate was shown to be low at 9.7 m/d, although a separate 2010 study showed higher rates at 14.1 and 28.0 m/d. Movement was shown to be nondirectional or random in the field, but a constrained random walk exhibiting direction into the field. Weed cover and high fruit density were associated with higher fly relative abundance, suggesting these field characteristics served as attractors slowing colonization rate into a field. Transect trap studies showed the temporal and spatial pattern of fly colonization into commercial wild blueberry fields, one of a slow wave that penetrates into the field interior as the season progresses. There is also an increase in fly abundance within-field edges and adjacent forest. The 'stacking' of flies along a field edge and slow movement rate into a field was shown through simulation to be a result of nondirectional short-distance dispersal of flies. © The Author(s) 2020. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera Liviidae), is an important insect pest of the citrus crop worldwide. It vectors the pathogen 'Candidatus Liberibacter asiaticus' (CLas) that causes a serious disease known as citrus greening. Here, we tested the infection frequency of Wolbachia and CLas from 100 D. citri individuals collected from two host plants belonging to families Rutaceae (Citrus reticulata Blanco) and Boraginaceae (Cordia myxa L.) using molecular methods. The following trend of endosymbionts infection in adult D. citri was found; 85.4% (35/41) by Wolbachia, and 19.5% (8/41) by CLas collected from C. reticulata plants and 65.4% (17/26) by Wolbachia, and 15.4% (4/26) by CLas in case of C. myxa plant. However, 61.5% (8/13) nymphs collected from C. reticulata and 20.0% (4/20) collected from C. myxa plants were infected by Wolbachia, while no nymph was infected by CLas collected from either host plants. Findings from this work represent the first report of CLas presence in D. citri feeding on C. myxa plants. By studying the presence of CLas with other endosymbiotic bacteria, future basic and applied research to develop control strategies can be prioritized. © The Author(s) 2020. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.The complete genome of Lake Sinai virus 3 (LSV3) was sequenced by the Ion Torrent next-generation sequencing (NGS) technology from an archive sample of honey bees collected in 2010. This strain M92/2010 is the first complete genome sequence of LSV lineage 3. From October 2016 to December 2017, 56 honey bee samples from 32 different locations and 41 bumble bee samples from five different locations were collected. These samples were tested using a specific reverse transcriptase-polymerase chain reaction (RT-PCR) method; 75.92% of honey bee samples and 17.07% of bumble bee samples were LSV-positive with the RT-PCR method. Phylogenetic comparison of 557-base pair-long RNA-dependent RNA polymerase (RdRp) genome region of selected 23 positive samples of honey bees and three positive bumble bee samples identified three different LSV lineages LSV1, LSV2, and LSV3. The LSV3 lineage was confirmed for the first time in Slovenia in 2010, and the same strain was later detected in several locations within the country. The LSV strains detected in bumble bees are from 98.6 to 99.4% identical to LSV strains detected among honey bees in the same territory. © The Author(s) 2020. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.European corn borer, Ostrinia nubilalis Hübner (Lepidoptera Crambidae), has been present in the United States for over 100 yr and documented on >200 plant species, including economically valuable crops. The reported preferred host of O. nubilalis is corn, Zea mays L. (Cyperales Poaceae), although it is considered to be a generalist agricultural pest. Life cycles of the two pheromone races, E and Z, align with the seasonality of different agricultural plants. Since the introduction of Bt corn in 1996, overall O. https://www.selleckchem.com/Androgen-Receptor.html nubilalis presence has declined and suggests that alternative crop plants might not be suitable hosts. We investigated plant vegetation preference of third-instar Z-race O. nubilalis for leaf disks of corn and a variety of other crops using 48 h no-choice and choice tests. Z-race larvae gained more mass on V6 non-Bt field corn leaf disks in comparison to other plant species options. Additionally, a preference for non-Bt field corn leaf disks was observed in most comparisons. Higher consumption of cucumber, Cucumis sativus L. (Cucurbitales Cucurbitaceae), leaf disks as compared to non-Bt field corn leaf disks suggested an ability to feed on excised leaf tissues of a plant species that does not induce defenses to herbivory. © The Author(s) 2020. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.