https://www.selleckchem.com/products/danicopan.html Plant expression platform is the new source of immunoglobulin G (IgG) toward small low-molecular-weight targets. The plant-made monoclonal antibody-based immunoassay exhibits comparable analytical performance with hybridoma antibody. Immunoassays for small molecules are efficiently applied for monitoring of serum therapeutic drug concentration, food toxins, environmental contamination, etc. Immunoglobulin G (IgG) is usually produced using hybridoma cells, which requires complicated procedures and expensive equipment. Plants can act as alternative and economic hosts for IgG production. However, the production of free hapten (low-molecular-weight target)-recognizing IgG from plants has not been successfully developed yet. The current study aimed at creating a plant platform as an affordable source of IgG for use in immunoassays and diagnostic tools. The functional IgG was expressed in Nicotiana benthamiana leaves infiltrated with Agrobacterium tumefaciens strain GV3101 with recombinant geminiviral vectors (pBduction of antibodies against low-molecular-weight targets in immunoassays.Wounding events (predation attempts, competitive combat) result in injuries and/or infections that induce integrated immune responses for the recovery process. Despite the survival benefits of immunity in this context, the costs incurred may require investment to be diverted from traits contributing to immediate and/or future survival, such as locomotor performance and oxidative status. Yet, whether trait constraints manifest likely depends on wound severity and the implications for energy budget. For this study, food intake, body mass, sprint speed, and oxidative indices (reactive oxygen metabolites, antioxidant capacity) were monitored in male side-blotched lizards (Uta stansburiana) healing from cutaneous wounds of discrete sizes (control, small, large). Results indicate that larger wounds induced faster healing, reduced food consumptio