https://www.selleckchem.com/products/apatinib.html In our present investigation, a series of novel 4-methoxy-1,3-benzenediolyl-hydrazones were designed and synthesized, and their ability to inhibit platelet aggregation was evaluated by adenosine diphosphate (ADP) and arachidonic acid (AA). The structures of the synthesized compounds were confirmed by spectral data. Results demonstrated that the activities of all compounds excelled the positive drug Picotamide (25.1% inhibition rate) and seven compounds (PNN01, PNN03, PNN05, PNN07, PNN09, PNN12, and PNN14) have efficiently inhibited platelet aggregation even higher than Clopidogrel (37.6% inhibition rate) induced by AA. Among them, PNN07 (39.8% inhibition rate) was considered as the most potent analogue. Evaluation of cytotoxic activity of the compounds against L929 cell line revealed that none of the compounds have significant cytotoxicity. Thus, diolylhydrazones derives are potential to be antiplatelet aggregation inhibitors and maybe working in AA-induced selectively.HCV-induced hepatitis is one of the most debilitating diseases. The limited number of anti-HCV drugs and drug-resistance necessitate developing of new scaffolds with different mode of actions. HCV non-structural protein 5B (NS5B) is an attractive target for development of novel inhibitors of HCV replication. In this paper, new N'-arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide derivatives were designed based on the pharmacophores of HCV NS5B active site binding inhibitors. Designed compounds were synthesized and evaluated for their inhibitory activities in a cell-based HCV replicon system assay. Among tested compounds, compounds 18 and 20 were found to be the most active (EC50 = 35 and 70 µM, respectively) with good selectivity index (SI > 2) in the corresponding series. Molecular modeling studies showed that the designed compounds are capable of forming key coordination with the two magnesium ions as well as interactions with other