https://www.selleckchem.com/products/gsk2606414.html Using a multilayer deposition approach, we first electrophoretically deposit (EPD) silicon dioxide (SiO2) as an intermediate layer between the metallic substrate and SOCAL. The necessity of EPD SiO2 is to smooth ( less then 10 nm roughness) as well as to enable the proper surface chemistry for SOCAL bonding. To characterize antiscaling performance, we utilized calcium sulfate (CaSO4) scale tests, showing a 20× reduction in scale deposition rate than untreated metallic substrates. Descaling tests revealed that SOCAL dramatically decreases scale adhesion, resulting in rapid removal of scale buildup. Our work not only demonstrates a robust methodology for depositing antiscaling SOCAL coatings on metals but also develops design guidelines for the creation of antifouling coatings for alternate applications such as biofouling and high-temperature coking.As a promising microwave absorber filler, molybdenum disulfide (MoS2), because of the unique structure, high electrical conductivity, and polarization effect, is receiving more and more interest. Developing MoS2-based composites with specific structure and morphology is a hot top in the field of microwave absorbers, because of its strong multiple scattering and reflecting for microwaves as well as its unique interfacial characteristics. Now, with a facile solvothermal method, a novel core-shell CoFe2O4@1T/2H-MoS2 composite is synthesized, where the CoFe2O4 nanospheres are entirely embedded in a special three-dimensional (3D) nest-like 1T/2H phase MoS2. Notably, in comparison with superparamagnetic CoFe2O4 nanospheres, the coercivities of as-synthesized CoFe2O4@1T/2H-MoS2 composites greatly increase. Here, 1T/2H-MoS2 exhibits ferromagnetism superimposed onto large diamagnetism. It is noted that, by adjusting the content of 1T/2H-phase MoS2, the microwave absorption performance of as-synthesized composites can be effectively tuned. The combination of 1T/2H-MoS2 with CoFe2O