Microenvironment-sensitive fluorescent (ESF) nucleosides are powerful tools for nucleic acid research. The new 5-substituted uridine analogues are synthesized, which comprise a 4H-cyclopenta[d]thiazole ring obtained by the Hantzsch synthesis reaction of 5-thioamide-uridine with aromatic α-bromocarbonyl compounds. The emission maximum of new compounds is in the visible region. They exhibit strong solvent- and pH-dependent fluorescent properties, indicating their promising ability to be fluorescent probes.An octapodal corannulene-based supramolecular system has been prepared by introducing eight corannulene moieties in a porphyrin scaffold. Despite the potential of this double picket fence porphyrin for double-tweezer behavior, NMR titrations show exclusive formation of 11 adducts. The system exhibits very strong affinity for C60 and C70 (K1 = (2.71 ± 0.08) × 104 and (2.13 ± 0.1) × 105 M-1, respectively), presenting selectivity for the latter. Density functional theory (DFT) calculations indicate that, in addition to the four corannulene units, the relatively flexible porphyrin tether actively participates in the recognition process, resulting in a strong synergistic effect. This leads to a very strong interaction with C60, which in turn also induces a large structural change on the other face (second potential binding site), leading to a negative allosteric effect. We also introduced Zn2+ in the porphyrin core in an attempt to modulate its flexibility. The resulting metalloporphyrin also displayed single-tweezer behavior, albeit with slightly smaller binding constants for C60 and C70, suggesting that the effect of the coordination of fullerene to one face of our supramolecular platform was still transmitted to the other face, leading to the deactivation of the second potential binding site.Bioinspired fibrous structure in three-dimension affords biomimicry, valuable functionality and performance to scaffolding in tissue engineering. In particular, the electrospun fibrous mesh has been studied as a scaffold material in various tissue regeneration applications. We produced a low-density 3D polycaprolactone/lactic acid fibrous mesh (3D-PCLS) via the novel lactic-assisted 3D electrospinning technique exploiting the catalytic properties of lactic acid as we reported previously. In the study, we demonstrated a strategy of recycling the lactic acid (LA) component to synthesize the osteoinductive biomolecules in situ, calcium lactate (CaL), thereby forming a 3D bioactive PCL/CaL fibrous scaffold (3D-SCaL) for bone tissue engineering. The fiber morphology of 3D-PCLS and its packing degree could have been tailored by modifying the spinning solution and the collector design. 3D-SCaL demonstrated successful conversion of CaL from LA, and exhibited the significantly enhanced bio-mineralization capacity, cell infiltration and proliferation rate, and osteoblastic differentiation in vitro with two different cell lines, MC3T3-e1 and BMSC. In conclusion, 3D-SCaL proves to be a highly practical and accessible strategy using a variety of polymers to produce 3D fibers as a potential candidate for future regenerative medicine and tissue engineering applications.To keep pace with the upcoming big-data era, the development of a device-level neuromorphic system with highly efficient computing paradigms is underway with numerous attempts. Synaptic transistors based on an all-solution processing method have received growing interest as building blocks for neuromorphic computing based on spikes. Here, we propose and experimentally demonstrated the dual operation mode in poly2,2-(2,5-bis(2-octyldodecyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrole-1,4-diyl)dithieno[3,2-b]thiophene-5,5-diyl-alt-thiophen-2,5-diyl(PDPPBTT)/ZnO junction-based synaptic transistor from ambipolar charge-trapping mechanism to analog the spiking interfere with synaptic plasticity. The heterojunction formed by PDPPBTT and ZnO layers serves as the basis for hole-enhancement and electron-enhancement modes of the synaptic transistor. Distinctive synaptic responses of paired-pulse facilitation (PPF) and paired-pulse depression (PPD) were configured to achieve the training/recognition function for digit image patterns at the device-to-system level. The experimental results indicate the potential application of the ambipolar transistor in future neuromorphic intelligent systems.The portable UV photodetector is used to timely remind humans of overexposure to UV radiation. However, the traditional UV photodetector cannot meet the practical demands, and the power supply problem hinders its further development. In this work, we demonstrated a flexible, transparent, and self-powered UV photodetector by coupling of triboelectric and photoelectric effects. The device integrates a flexible ZnO nanoparticle (NP) UV photodetector, a transparent- and flexible-film-based TENG (TFF-TENG), commercial chip resistors, and LEDs on the PET thin film. The TFF-TENG could harvest mechanical energy from finger tapping and sliding motion and power the ZnO NP UV photodetector to realize self-powered detection. The voltage of the constant resistors connected with the UV photodetector in series changes from 0.5 to 19 V under the UV light with power intensities increasing from 0.46 to 21.8 mW/cm2, and the voltage variation is reflected by the number of LEDs directly. https://www.selleckchem.com/products/lys05.html The excellent flexibility and transparency of the device could extend its application scenarios; for example, such a portable device could be applied to real-time monitoring of the UV radiation to remind humans of intense UV light.Light-responsive nanoprobes were suffering from the threat of high-dose laser irradiation, and it was important for constructing new nanoprobes for safe and efficient phototheranostics. Here, polydopamine (PDA)-coated gold nanobipyramids (AuNBPs@PDA) were synthesized for amplified photoacoustic (PA) signal and enhanced photothermal conversion with low-dose laser irradiation and then doxorubicin (DOX)-loaded AuNBPs@PDA-DOX nanoprobes were constructed for PA imaging-guided synergistic photothermal therapy (PTT) and chemotherapy. The AuNBPs@PDA nanoparticles possessed higher photothermal conversion efficiency (42.07%) and stronger PA signal than those of AuNBP nanoparticles, and the AuNBPs@PDA-DOX nanoprobes showed dual-responsive DOX release of pH and photothermal stimulation. With low-dose laser irradiation (1.0 W/cm2) and low-concentration AuNBPs@PDA-DOX (60 μg/mL), the 4T1 cell viability was reduced to about 5%, owing to the combination of PTT and chemotherapy, compared with 42.3% of single chemotherapy and 25.