https://www.selleckchem.com/products/Azacitidine(Vidaza).html Fluorescent nanoparticles (NPs) have been used to develop latent fingerprints with enhanced contrast. However, a method for quantifying the contrast is still lacking, making it impossible to achieve quantitative comparison in the contrast enhancement between different fingerprint developing agents. Here we proposed a new method to quantify the developed contrast using two indexes when fluorescent NPs were used to develop the latent fingerprint. One is the intensity index (I) defined as the ratio between the integrated fluorescence intensities of the signal and background in the fluorescence spectra of the developed fingerprint. Another is the chroma index (C) determined from the color difference between developed fingerprints and their substrates in the chromaticity graph. We defined the developed contrast as the product of the chroma index and the common logarithm of the intensity index (C·lg I), and validated this method using both down- and up-conversion fluorescent NPs and on a variety of different substrates (glass, marble, red paper and money). We showed that the developed contrast quantified by our method effectively reflected the true contrast but the intensity or chroma index alone was not always effective. This work opens up a new avenue to quantifying and enhancing the developed contrast.We identified and explored the structure-activity relationship (SAR) of a novel heterocyclic chemical series of arenavirus cell entry inhibitors. Optimized lead compounds, including diphenyl-substituted imidazo[1,2-a]pyridines, benzimidazoles, and benzotriazoles exhibited low to sub-nanomolar potency against both pseudotyped and infectious Old and New World arenaviruses, attractive metabolic stability in human and most nonhuman liver microsomes as well as a lack of hERG K + channel or CYP enzyme inhibition. Moreover, the straightforward synthesis of several lead compounds (e.g., the simple high yield 3-step syn