ns. CONCLUSIONS Our data suggest that co-infection with HHVs, especially CMV and HHV-6, may contribute to the development of serious clinical manifestations with profound lymphopenia, pneumonia rash and increased risk for bacterial and fungal co-infections. These findings may suggest the synergistic effect of HHVs associated infection.BACKGROUND Cerebrospinal fluid biomarker profiles characterized by decreased amyloid-beta peptide levels and increased total and phosphorylated tau levels at threonine 181 (pT181) are currently used to discriminate between Alzheimer's disease and other neurodegenerative diseases. However, these changes are not entirely specific to Alzheimer's disease, and it is noteworthy that other phosphorylated isoforms of tau, possibly more specific for the disease process, have been described in the brain parenchyma of patients. The precise detection of these isoforms in biological fluids remains however a challenge. METHODS In the present study, we used the latest quantitative mass spectrometry approach, which achieves a sensitive detection in cerebrospinal fluid biomarker of two phosphorylated tau isoforms, pT181 and pT217, and first analyzed a cohort of probable Alzheimer's disease patients and patients with other neurological disorders, including tauopathies, and a set of cognitively normal controls. https://www.selleckchem.com/products/nik-smi1.html We then checked T217 levels, more than those of pT181, are highly specific biomarkers for detecting both the preclinical and advanced forms of Alzheimer's disease. This finding should greatly improve the diagnosis of Alzheimer's disease, along with the correlations found to exist between pT217 levels and PiB-PET data. It also suggests that pT217 is a promising potential target for therapeutic applications and that a link exists between amyloid and tau pathology.In the publication of this article [1], there is an error in the name of one of the contributing authors.BACKGROUND Though accumulated evidence has demonstrated visceral organ involvement in acute graft-versus-host disease (aGVHD), how aGVHD influences the bone marrow (BM) niche and the reconstitution of hematopoiesis post-hematopoietic stem cell transplantation remains largely unknown. METHODS In the current study, the cell morphology, immunophenotype, multi-differentiation capacity, self-renewal capacity, and hematopoiesis promotion of the MSCs from aGVHD and non-aGVHD patients were investigated. Additionally, the stemness and hematopoiesis-promoting property of healthy donor-derived MSCs were evaluated in the presence of BM supernatant from aGVHD patients. Mechanistically, antibodies targeting inflammatory cytokines involved in aGVHD were added into the MSC culture. Furthermore, a recombinant human tumor necrosis factor (TNF-α) receptor-Ig fusion protein (rhTNFRFc) was used to protect healthy donor-derived MSCs. Moreover, mRNA sequencing was performed to explore the underlying mechanisms. RESULTS The aGVHD MSCs exhibited morphological and immunophenotypic characteristics that were similar to those of the non-aGVHD MSCs. However, the osteogenic and adipogenic activities of the aGVHD MSCs significantly decreased. Additionally, the colony formation capacity and the expression of self-renewal-related genes remarkably decreased in aGVHD MSCs. Further, the hematopoiesis-supporting capacity of aGVHD MSCs significantly reduced. The antibody neutralization results showed that TNF-α contributed to the impairment of MSC properties. Moreover, rhTNFRFc exhibited notable protective effects on MSCs in the aGVHD BM supernatants. The mRNA sequencing results indicated that the TNF-α pathway and the Toll-like receptor pathway may be activated by TNF-α. CONCLUSIONS Thus, our data demonstrate MSCs as cellular targets of aGVHD and suggest a potential role of TNF-α blockage in maintaining the BM niche of aGVHD patients.BACKGROUND Autologous cellular immunotherapy or immune enhancement therapy has demonstrated some promising benefits for prostate cancer. T cell-based immunotherapy or sipuleucel-T therapy has yielded certain beneficial responses and a slight improvement on the overall survival of patients with metastatic castration-resistant prostate cancer (mCRPC) as shown in some clinical trials, suggesting that prostate cancer is immunoresponsive. METHODS In this study, we developed an adaptive cytokine-induced killer cell (CIK)-based immunotherapeutic application targeting the prostate cancer stem-like cells (PCSCs). In this therapeutic platform, dendritic cells (DC) were isolated from the peripheral blood mononuclear cells (PBMCs) and preloaded or sensitized with immunogenic peptides derived from two PCSC-associated cell membrane molecules, CD44 and EpCAM, followed by co-culture with the expanded peripheral blood lymphocyte (PBL)-derived CIK cells. The in vitro cytotoxic activity of DC-activated CIK cells against PCSCs was determined by CCK8 and TUNEL assays, and the in vivo anti-tumor effect of DC-activated CIK cells on prostate cancer xenograft tumors was evaluated in subcutaneous and orthotopic xenograft models. RESULTS Our results showed that the peptide-sensitized DC-CIK cell preparation manifested significant in vitro cytotoxic activity against the PCSC-enriched prostatospheroids and also in vivo anti-tumor effect against prostate cancer xenografts derived from the PCSC-enriched prostatospheroids. CONCLUSIONS Together, our established immunogenic peptide-sensitized DC-CIK-based cell preparation platform manifests its potential immunotherapeutic application in targeting the PCSCs and also prostate cancer.BACKGROUND Diabetic cardiomyopathy (DCM) is a cardiac complication of long-term uncontrolled diabetes and is characterized by myocardial fibrosis and abnormal cardiac function. Mesenchymal stem cells (MSCs) are multipotent cells with immunoregulatory and secretory functions in diabetes and heart diseases. However, very few studies have focused on the effect and the underlying mechanism of MSCs on myocardial fibrosis in DCM. Therefore, we aimed to explore the therapeutic potential of MSCs in myocardial fibrosis and its underlying mechanism in vivo and in vitro. METHODS A DCM rat model was induced using a high-fat diet (HFD) combined with a low-dose streptozotocin (STZ) injection. After four infusions of MSCs, rat serum and heart tissues were collected, and the levels of blood glucose and lipid, cardiac structure, and function, and the degree of myocardial fibrosis including the expression levels of pro-fibrotic factor and collagen were analyzed using biochemical methods, echocardiography, histopathology, polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA).