https://www.selleckchem.com/products/epacadostat-incb024360.html From 2016 to 2018, an epidemic wave of yellow fever (YF) occurred in Brazil, affecting a large number of Platyrrhini monkeys. Titi monkeys (Callicebus spp.) were severely affected yet pathological characterizations are lacking. This study characterized epizootic YF in 43 titi monkeys (Callicebus spp.) with respect to the microscopic lesions in liver, kidney, spleen, heart, brain, and lung, as well as the distribution of immunolabeling for YF virus antigen, and the flaviviral load in the liver. Of 43 titi monkeys examined, 18 (42%) were positive for yellow fever virus (YFV) by immunohistochemistry or reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Affected livers had consistent marked panlobular necrotizing hepatitis, lipidosis, and mild inflammation, with intense immunolabeling for YFV mainly in centrilobular hepatocytes (zone 1; P = .05). In the spleen, consistent findings were variable lymphoid depletion (10/11), lymphoid necrosis (lymphocytolysis; 4/11), and immunolabeling for YFV in histiocytic cells (3/16). The main finding in the kidney was multifocal acute necrosis of tubular epithelium (5/7) that was occasionally associated with intracytoplasmic immunolabeling for YFV (6/15). These data indicate that titi monkeys are susceptible to YFV infection, developing severe hepatic lesions and high viral loads, comparable to humans and Alouatta spp. Thus, Callicebus spp. may be reliable sentinels for YF surveillance.Deciding which random effects to retain is a central decision in mixed effect models. Recent recommendations advise a maximal structure whereby all theoretically relevant random effects are retained. Nonetheless, including many random effects often leads to nonpositive definiteness. A typical remedy is to simplify the random effect structure by removing random effects or associated covariances. However, this practice is known to bias estimates of remaining co