https://www.selleckchem.com/products/dcz0415.html A porous organic cage crystal, α-CC2, shows unexpected adsorption of sulphur hexafluoride (SF6) in its cage cavities analysis of the static crystal structure indicates that SF6 is occluded, as even the smallest diatomic gas, H2, is larger than the window of the cage pore. Herein, we use in situ powder X-ray diffraction (PXRD) experiments to provide unequivocal evidence for the presence of SF6 inside the 'occluded' cage voids, pointing to a mechanism of dynamic flexibility of the system. By combining PXRD results with molecular dynamics simulations, we build a molecular level picture of the cooperative porosity in α-CC2 that facilitates the passage of SF6 into the cage voids.Conventional conductive hydrogels usually lack self-healing properties, but might be favorable for smart electronic applications. Therefore, we present the fabrication of conductive self-healing hydrogels that merge the merits of electrical conductivity and self-healing properties. The conductive self-healing hydrogel composite was prepared by using single-walled carbon nanotubes (SWCNTs), poly(vinyl alcohol) (PVA), and a poly(N,N-dimethyl acrylamide) copolymer derivative modified with pyrene and borate functional moieties. While the tethered pyrene groups of the copolymer facilitated an even dispersion of the conductive components, i.e., SWCNTs, in aqueous solution viaπ-π stacking, the hydrogel system was formed via covalent dynamic cross-linking through tetrahedral borate ion interaction with the -OH group of PVA. The hydrogel composites exhibited bulk conductivity (1.27 S m-1 with 8 mg mL-1 SWCNTs) with a fast and autonomous self-healing ability that restored 95% of the original conductivity within 10 s under ambient conditions. Accordingly, due to their outstanding properties, we postulate that these composites may have potential in biomedical applications, such as tissue engineering, wound healing or electronic skins.The reactive oxygen speci