https://www.selleckchem.com/products/VX-765.html Links between synergy and microbial community characteristics in co-digestion of food waste (FW), cattle manure (CM) and corn straw (CS) were investigated. Mono-digestion of FW and CS were inhibited by organic acids. Co-digestion of FW with CM achieved greater synergistic rates (18.5% and 22.3%) than CM with CS (14.8% and 12.3%). Synergy resulted from coupling effects of improving nutrient balance, dilution of toxic compounds, higher buffering capacity, detoxification based on co-metabolism, which ultimately reflected in microbial community functions. Although co-digestion of FW with CS exhibited lowest synergistic rates (7.9% and 4.9%), detoxification based on co-metabolism of syntrophic communities of Syntrophomonadaceae with hydrogenotrophic methanogens accelerated system recovery. Digester with the greatest synergy (65% FW + 35% CM) maintained dominant growth of hydrogenotrophic methanogens (68.9%), highest methanogenic community diversity and relative abundance of Methanosarcina (14.6%), which sustained more diverse and switchable methanogenic pathways therefore ensured powerful methanogenic functions and vigorous methanogenic capability.In this study, an integrated device with scrubbing and biochemical treatment functions was used, and partial nitrification (PN)-Anammox and sulfur autotrophic denitrification (SADN) processes were coupled in a biochemical treatment pond to explore the feasibility of in-situ autotrophic removal of NH3 and H2S. The results showed that the removal efficiency of NH3 and H2S in waste gas are 95% and 87.5% respectively. The scrubbing liquid was efficiently treated in the biochemical treatment pond. Nitrogenous compounds weren't accumulated in liquid and converted to N2 by SADN and PN-Anammox coupling system. S2- was mainly used by SADN process to reduce NO3-. The scrubbing liquid processed by the biochemical treatment pond was refluxed to the scrubber to achieve continuous absorption o