https://www.selleckchem.com/products/azd4573.html A bioinformatics analysis of the currently predicted GroEL-like proteins encoded by bacteriophage genomes was carried out in comparison with the phage double-ring EL and single-ring OBP chaperonins, previously described by us, as well as with the known chaperonins of group I and group II. A novel GroEL-like protein predicted in the genome of phage AR9 Bacillus subtilis was expressed in E. coli cells, purified and characterised by various physicochemical methods. As shown by native electrophoresis, analytical ultracentrifugation and single-particle electron microscopy analysis, the putative AR9 chaperonin is a single-ring heptamer. Like the EL and OBP chaperonins, the new AR9 chaperonin possesses chaperone activity and does not require co-chaperonin to function. It was shown to prevent aggregation and provide refolding of the denatured substrate protein, endolysin, in an ATP-dependent manner. A comparison of its structural and biochemical properties with those of the EL and OBP chaperonins suggests outstanding diversity in this group of phage chaperonins. V.A novel sulfonated chitosan-derived carbon-based catalyst was successfully prepared via isoamyl nitrite-assisted sulfanilic acid sulfonation, and its catalytic activity was examined using dehydration of fructose. The structural and chemical properties of sulfonated chitosan-derived carbon were characterized by SEM, FTIR, XRD, XPS, element analysis, N2 adsorption-desorption experiment, and acid-base titration experiment. KOH was used as activating agent in the synthesizing of carbon supports, and it was found that properly increasing the dose of KOH during activation stage had a positive effect on the subsequent sulfonation of prepared activated carbon. 4KSCC, with the highest sulfonation degree (2.04 mmol/g), exhibited high performance for the conversion of fructose to HMF in various solvent, and an optimal HMF yield of 80.9% was obtained at 140 °C in 40 min. In ad