https://www.selleckchem.com/products/Cyclopamine.html Like ACN, acetone can be found in the first and second layer of solvent molecules at the silica surface; like acetophenone, acetone adsorbs to the bonded-phase chains by orienting its polar group to the bulk region to sustain hydrogen bonds with W molecules. Uracil behavior is governed by a need for extensive hydrogen-bond coordination by W molecules. Uracil adsorbs to the very edge of the bonded-phase chains, on the bulk-region side of the ACN density maximum in the interfacial region. Further penetration into the chains is prevented by the absence of W molecules, which are not found deeper in the bonded phase, except at the silica surface. Contrary to true analytes, accumulation of uracil and acetone in the interfacial region ceases at an equimolar presence of W and ACN in the mobile phase (at 70‒80% ACN volume fraction). Uracil achieves a closer approximation of the stationary-phase limit than acetone, but carries the risk of HILIC retention at high ACN fraction in the mobile phase.In this work, for the first time five amine-ligands including mono-amine, di-amine, tri-amine, secondary and tertiary amine, were functionalized on mesoporous micro-silicas and developed as stationary phases for hydrophilic interaction liquid chromatography (HILIC). The investigations about the retention mechanisms, effects of different chromatographic conditions and stability were systematically conducted. Three kinds of polar and hydrophilic compounds (saccharides, sulfonamides, nucleosides and nucleobases) were selected as probe molecules to evaluate their separation performances. Among the five stationary phases, only aminopropyl-bonded silica has already gained wide developments and applications. Whereas, there are no related researches about the other four to be utilized as separation media. By a series of chromatographic evaluations, the results revealed the other four mesoporous micro-silica materials functionalized with di-