https://www.selleckchem.com/products/oseltamivir-acid.html We demonstrate imaging premature infants with retinopathy of prematurity (ROP) in the NICU, a patient with incontinentia pigmenti (IP), and a patient with X-linked retinoschisis (XLRS) in the OR using our handheld OCT system. Our design may have the potential for improving the diagnosis of retinal diseases and help provide a practical guideline for designing a flexible and portable OCT system.Optical systems with integrated tunable lenses allow for rapid axial-scanning without mechanical translation of the components. However, changing the power of the tunable lens typically upsets aberration balancing across the system, introducing spherical and chromatic aberrations that limit the usable axial range. This study develops an analytical approximation for the tuning-induced spherical and axial chromatic aberration of a general optical system containing a tunable lens element. The resulting model indicates that systems can be simultaneously corrected for both tuning-induced spherical and chromatic aberrations by controlling the lateral magnification, coma, and pupil lateral color prior to the tunable surface. These insights are then used to design a realizable axial-scanning microscope system with a high numerical aperture and diffraction-limited performance over a wide field of view and deep axial range.Light scattering has been used for label-free cell detection. The angular light scattering patterns from the cells are unique to them based on the cell size, nucleus size, number of mitochondria, and cell surface roughness. The patterns collected from the cells can then be classified based on different image characteristics. We have also developed a machine learning (ML) method to classify these cell light scattering patterns. As a case study we have used this light scattering technique integrated with the machine learning to analyze staurosporine-treated SH-SY5Y neuroblastoma cells and compare them to non-trea