040) patients. In addition, it was shown that the increased nuclear expression of TWIST1 had a poor prognostic value for disease-specific survival (DSS) and progression-free survival (PFS) (P = 0.042, P = 0.043, respectively) in patients with CRC. Moreover, analysis of CD105 expression level has revealed that there is a statistically significant association between the increased expression of CD105 in tumoral epithelial cells and more advanced TNM stage (P = 0.050). Our results demonstrate that nuclear TWIST1 and cytoplasmic CD105 expressions in tumor cells had associations with more aggressive tumor behavior and more advanced diseases in CRC cases. Our results demonstrate that nuclear TWIST1 and cytoplasmic CD105 expressions in tumor cells had associations with more aggressive tumor behavior and more advanced diseases in CRC cases. A bibliometric review of the literature. To identify the most frequently cited articles relating to the repair of intervertebral disc (IVD) and to summarize the key points and findings of these highly cited works, to quantify their impact on the developments of the disc disease treatment. IVD repair is an ever-growing and multi-disciplinary innovating treatment method for disc diseases. There are numerous literatures and related studies about it, promoting the development of the field. A comprehensive review and analysis of the most influential articles can help clarify the most effective strategy of IVD repair, and discover the promising directions for future research. The Thomson Reuters Web of Knowledge was searched for citations of all literatures relevant to IVD repair. https://www.selleckchem.com/products/sc-43.html The number of citations, key points, categories, authorships, years, journals, countries, and institutions of publications were analyzed. The most highly cited articles in IVD Repair were published over 30 years, between 1991 and contributed the most to the study of the IVD repair and the body of knowledge used to the repair strategy making. It allows insight into the trends of this innovative and interdisciplinary subspecialty of spine surgery. The healing of large critical-sized bone defects remains a clinical challenge in modern orthopedic medicine. The current gold standard for treating critical-sized bone defects is autologous bone graft; however, it has critical limitations. Bone tissue engineering has been proposed as a viable alternative, not only for replacing the current standard treatment, but also for producing complete regeneration of bone tissue without complex surgical treatments or tissue transplantation. In this study, we proposed a transplantable radially patterned scaffold for bone regeneration that was defined by capillary force lithography technology using biodegradable polycaprolactone polymer. The radially patterned transplantable biodegradable scaffolds had a radial structure aligned in a central direction. The radially aligned pattern significantly promoted the recruitment of host cells and migration of osteoblasts into the defect site. Furthermore, the transplantable scaffolds promoted regeneration of critical-sized bone defects by inducing cell migration and differentiation. Our findings demonstrated that topographically defined radially patterned transplantable biodegradable scaffolds may have great potential for clinical application of bone tissue regeneration. Our findings demonstrated that topographically defined radially patterned transplantable biodegradable scaffolds may have great potential for clinical application of bone tissue regeneration.In recent decades, a new method of cellular immunotherapy was introduced based on engineering and empowering the immune effector cells. In this type of immunotherapy, the immune effector cells are equipped with chimeric antigen receptor (CAR) to specifically target cancer cells. In much of the trials and experiments, CAR-modified T cell immunotherapy has achieved very promising therapeutic results in the treatment of some types of cancers and infectious diseases. However, there are also some considerable drawbacks in the clinical application of CAR-T cells although much effort is in progress to rectify the issues. In some conditions, CAR-T cells initiate over-activated and strong immune responses, therefore, causing unexpected side-effects such as systemic cytokine toxicity (i.e., cytokine release syndrome), neurotoxicity, on-target, off-tumor toxicity, and graft-versus-host disease (GvHD). To overcome these limitations in CAR-T cell immunotherapy, NK cells as an alternative source of immune effector cells have been utilized for CAR-engineering. Natural killer cells are key players of the innate immune system that can destroy virus-infected cells, tumor cells, or other aberrant cells with their efficient recognizing capability. Compared to T cells, CAR-transduced NK cells (CAR-NK) have several advantages, such as safety in clinical use, non-MHC-restricted recognition of tumor cells, and renewable and easy cell sources for their preparation. In this review, we will discuss the recent preclinical and clinical studies, different sources of NK cells, transduction methods, possible limitations and challenges, and clinical considerations. Early studies conclude patients with Covid-19 have a high risk of death, but no studies specifically explore cardiac surgery outcome. We investigate UK cardiac surgery outcomes during the early phase of the Covid-19 pandemic. This retrospective observational study included all adult patients undergoing cardiac surgery between 1st March and 30th April 2020 in nine UK centres. Data was obtained and linked locally from the National Institute for Cardiovascular Outcomes Research Adult Cardiac Surgery database, the Intensive Care National Audit and Research Centre database and local electronic systems. The anonymised datasets were analysed by the lead centre. Statistical analysis included descriptive statistics, propensity score matching (PSM), conditional logistic regression and hierarchical quantile regression. Of 755 included individuals, 53 (7.0%) had Covid-19. Comparing those with and without Covid-19, those with Covid-19 had increased mortality (24.5% v 3.5%, p< 0.0001) and longer post-operative stay (11 days v 6 days, p= 0.