Human immunodeficiency virus (HIV) antibodies have been proposed as a measure of the size of the HIV reservoir. The aim of our study is to quantify the anti-HIV antibodies level in a cohort of people living with HIV (PLWH), stratified based on the presence of continuous undetectable HIV viral load and the co-existence of hepatitis C virus infection. A sample of 229 HIV-monoinfected (n = 114) or HIV/HCV-coinfected [either with resolved HCV infection (n = 75) or active HCV coinfection (n = 40)] patients, followed up a median of 34 (IQR 20-44) months, was studied. Anti-HIV index was obtained as the 1800 dilution of HIV antibodies. CD4+ T cell count, time with undetectable HIV viral load, annual increase of CD4+ T cell count, anti-HCV therapy, and diagnosis of cirrhosis were analyzed. Patients with a continued suppressed HIV viral load had significant lower anti-HIV index compared with those with virologic failure during the follow-up. Significant higher CD4+ T cell increase was observed in those with a lower anti-HIV index. HIV-monoinfected patients showed an anti-HIV index significantly lower than patients with HCV coinfection. Resolved HCV infection after interferon-based therapy, but not with direct acting antivirals, was associated with a lower anti-HIV index. HIV/HCV-coinfected patients showed higher HIV antibodies level when compared with HIV-monoinfected individuals. A decrease in anti-HIV index in HIV/HCV-coinfected patients was detected when a sustained virological HCV response was obtained after interferon-based therapy, in possible relation with the direct or indirect effect of interferon on PLWH CD4 T cells.Identifying individuals at the earliest disease stage becomes crucial as we aim to develop disease-modifying treatments for neurodegenerative disorders. Prodromal diagnostic criteria were recently developed for Parkinson's disease (PD) and are forthcoming for dementia with Lewy bodies (DLB). https://www.selleckchem.com/products/mlt-748.html The latest 2008 version of diagnostic criteria for multiple system atrophy (MSA) have improved diagnostic accuracy in early disease stages compared to previous criteria, but we do not yet have formal criteria for prodromal MSA. Building on similar approaches as for PD and DLB, we can identify features on history-taking, clinical examination, and ancillary clinical testing that can predict the likelihood of an individual developing MSA, while also distinguishing it from PD and DLB. The main clinical hallmarks of MSA are REM sleep behavior disorder (RBD) and autonomic dysfunction (particularly orthostatic hypotension and urogenital symptoms), and may be the primary means by which patients with potential prodromal MSA are identified. Preserved olfaction, absence of significant cognitive deficits, urinary retention, and respiratory symptoms such as stridor and respiratory insufficiency can be clinical features that help distinguish MSA from PD and DLB. Finally, ancillary test results including neuroimaging as well as serological and cerebrospinal fluid (CSF) biomarkers may lend further weight to quantifying the likelihood of phenoconversion into MSA. For prodromal criteria, the primary challenges are MSA's lower prevalence, shorter lead time to diagnosis, and strong overlap with other synucleinopathies. Future prodromal criteria may need to first embed the diagnosis into a general umbrella of prodromal alpha-synucleinopathies, followed by identification of features that suggest prodromal MSA as the specific cause.BACKGROUND Respiratory motion in PET/CT leads to well-known image degrading effects commonly compensated using elastic motion correction approaches. Gate-to-gate motion correction techniques are promising tools for improving clinical PET data but suffer from relatively long reconstruction times. In this study, the performance of a fast elastic motion compensation approach based on motion deblurring (DEB-MC) was evaluated on patient and phantom data and compared to an EM-based fully 3D gate-to-gate motion correction method (G2G-MC) which was considered the gold standard. METHODS Twenty-eight patients were included in this study with suspected or confirmed malignancies in the thorax or abdomen. All patients underwent whole-body [18F]FDG PET/CT examinations applying hardware-based respiratory gating. In addition, a dynamic anthropomorphic thorax phantom was studied with PET/CT simulating tumour motion under controlled but realistic conditions. PET signal recovery values were calculated from phantom scans by compdata. The fast elastic motion compensation technique DEB-MC may thereby be a valuable alternative to state-of-the art motion correction techniques.Essential tremor manifests predominantly as a tremor of the upper limbs. One therapy option is high-frequency deep brain stimulation, which continuously delivers electrical stimulation to the ventral intermediate nucleus of the thalamus at about 130 Hz. Constant stimulation can lead to side effects, it is therefore desirable to find ways to stimulate less while maintaining clinical efficacy. One strategy, phase-locked deep brain stimulation, consists of stimulating according to the phase of the tremor. To advance methods to optimise deep brain stimulation while providing insights into tremor circuits, we ask the question can the effects of phase-locked stimulation be accounted for by a canonical Wilson-Cowan model? We first analyse patient data, and identify in half of the datasets significant dependence of the effects of stimulation on the phase at which stimulation is provided. The full nonlinear Wilson-Cowan model is fitted to datasets identified as statistically significant, and we show that in each case the model can fit to the dynamics of patient tremor as well as to the phase response curve. The vast majority of top fits are stable foci. The model provides satisfactory prediction of how patient tremor will react to phase-locked stimulation by predicting patient amplitude response curves although they were not explicitly fitted. We also approximate response curves of the significant datasets by providing analytical results for the linearisation of a stable focus model, a simplification of the Wilson-Cowan model in the stable focus regime. We report that the nonlinear Wilson-Cowan model is able to describe response to stimulation more precisely than the linearisation.