https://www.selleckchem.com/products/anacardic-acid.html ases, namely, BBB disruption mediated by HMGB1. It is proposed that HMGB1 might be an excellent target for the treatment of CNS diseases with BBB disruption.This article reports a case of a 7-year-old girl with Turner syndrome, treated with growth hormone (GH), who developed ovarian dysgerminoma. The patient karyotype was mosaic for chromosome Xq deletion 46,X,del(X)(q22)/45,X. No Y chromosome sequences were present. Molecular studies revealed the presence of a driving mutation in exon 17 of the KIT gene in the neoplastic tissue, as well as Sonic-hedgehog (SHH) pathway activation at the protein level. The patient responded well to chemotherapy and remained in complete remission. This is the first case of dysgerminoma in a Turner syndrome patient with such oncogenic pathway.Climbing robots are characterized by a secure surface coupling that is designed to prevent falling. The robot coupling ability is assured by an adhesion method leading to nonlinear dynamic models with time-varying parameters that affect the robot's mobility. Additionally, the wheel friction and the force of gravity force are also relevant issues that can compromise the climbing ability if they are not well modeled. This work presents a model-based torque controller for velocity tracking in a four-wheeled climbing robot specially designed to inspect storage tanks. The model-based controller (MPC) compensates for the effects of nonlinearities due to the forces of gravity, friction, and adhesion through the dynamic and kinematic modeling of the climbing robot. Dynamic modeling is based on the Lagrange-Euler approach, which allows a better understanding of how forces and torques affect the robot's movement. Besides, an analysis of the interaction force between the robot and the contact surface is proposed, since this force affects the motion of the climbing robot according to spatial orientation. Finally, simulations are carried out to examine t