https://www.selleckchem.com/products/gsk-lsd1-2hcl.html Online measuring end-tidal propofol concentration during balanced anesthesia is important for anesthetists to learn the patient's anesthesia depth as exhaled propofol concentration is well related to blood propofol concentration. In previous work, exhaled propofol was detected using acetone assisted negative photoionization ion mobility spectrometer, however, the existence of high concentration sevoflurane interfered the response of propofol. In this work, an anisole assisted photoionization ion mobility spectrometer operated in positive mode was developed to sensitively and selectively measure the end-tidal propofol by eliminating the interferences of exhaled humidity and sevoflurane during balanced anesthesia. Anisole molecular ion is stable enough not to go under proton transfer reaction with water presents in the exhaled breath. Hence, the exhaled humidity related peaks were eliminated and only one propofol product ion peak (K0 = 1.50 cm2 V-1 s-1) was observed. The relative standard deviation (RSD) ranging from 0.64%-0.91% showed good repeatability and the quantitative range was 0.2-40 ppbv with a response time of 4 s. Finally, the performance of the proposed method was demonstrated by monitoring end-tidal propofol of balanced anesthetized patients during gastric cancer surgery. Biochanin A is one of the most common phytoestrogens, occurring in high concentrations in soy and red clover, for instance, which shows a wide spectrum of biological activity. Prunetin is an isomer of biochanin A, and even though it is not very common, its structural relationship to the latter makes it interesting, regarding its biological activity. Nowadays, LC/ESI-MS methods are widely used for identification of natural compounds, including biochanin A and prunetin. However, we found that the published data concerning the identification of biochanin A and prunetin are sometimes disputable. Namely, the identification is based on th